Answer:
see below
Explanation:
Modified problem
(x)^2-3/x
Step 1: Find f(x+h)
(x+h)^2-3/(x+h)
x^2 +2hx + h^2 -3/(x+h)
Step 2: Find f(x + h) − f(x)
x^2 +2hx + h^2 -3/(x+h) - ( x^2-3/x)
Distribute the minus sign
x^2 +2hx + h^2 -3/(x+h) - x^2+3/x
Combine like terms and get a common denominator
2hx + h^2 -3x/(x(x+h)) +3(x+h)/(x(x+h)
2hx + h^2 +3h/(x(x+h))
Step 3: Find (f(x + h) − f(x))/h
(2hx + h^2+3h/(x(x+h)) )/h
2hx/h + h^2/h+3h/(x(x+h)) /h
2x +h +3/(x(x+h))
Step 4: Find lim h→0 (f(x + h) − f(x))/h
2x+0 +3/(x(x+0))
2x +3/x^2