Answer:
95% of confidence interval for the Population
( 6.1386 , 6.8614)
Explanation:
Step( i ):-
Given random sample size 'n' =85
Mean of the sample size x⁻ = 6.5 years
Standard deviation of Population = 1.7 years
Level of significance = 0.95 or 0.05
Step(ii):-
95% of confidence interval for the Population is determined by
![(x^(-) - Z_(0.05) (S.D)/(√(n) ) , x^(-) + Z_(0.05) (S.D)/(√(n) ))](https://img.qammunity.org/2021/formulas/mathematics/college/8yy3q39ya6dtw8pj2s8dhhrwef119putjg.png)
![(6.5 - 1.96(1.7)/(√(85) ) , 6.5 + 1.96 (1.7)/(√(85) ))](https://img.qammunity.org/2021/formulas/mathematics/college/4po8sypz36vo2qgao9lugm3pjmape2gj6j.png)
( 6.5 - 0.3614 , 6.5 + 0.3614 )
( 6.1386 , 6.8614)
Conclusion:-
95% of confidence interval for the Population
( 6.1386 , 6.8614)