Answer:
K = 9.41 J
Step-by-step explanation:
The kinetic energy of a spherical shell is given as:
![k = (1)/(2) I \omega^2](https://img.qammunity.org/2021/formulas/physics/college/ea1qceb6oz87vohjytlcltcibrr1hajczg.png)
where I = moment of inertia and
ω = angular velocity
Let us find I:
For a hollow sphere:
![I = (2)/(3) MR^2](https://img.qammunity.org/2021/formulas/physics/college/sh6mnejigizpxsdkayr2b715x7vpivp7fk.png)
where M = mass = 8.35 kg
R = radius = 0.225 m
![=> I = (2)/(3) * 8.35 * 0.225^2 = 0.282 kgm^2](https://img.qammunity.org/2021/formulas/physics/college/442fuolbyse0pyesdp8tymkrijmynl1hgt.png)
Let us find ω:
Since angular acceleration is constant:
![\omega^2 = \omega_0^2 + 2\alpha(\theta - \theta_0)\\\\\omega_0 = 0\\\\=>\omega^2 = 2\alpha(\theta - \theta_0)\\\\\theta - \theta_0 = 6 * (2 * \pi) = 37.70 rad\\\\\omega^2 = 2 * 0.885 * 37.70 = 66.729](https://img.qammunity.org/2021/formulas/physics/college/llnumkypbvwvqjjsldx23m6gir9uhnhewt.png)
Therefore, its kinetic energy is:
![K = (1)/(2) * 0.282 * 66.729\\\\K = 9.41 J](https://img.qammunity.org/2021/formulas/physics/college/yrsiui5mc5rtd3m0lo4y7cvmazhar74kno.png)