Answer:
42 m
Explanation:
First, find <S
<S = 180 - (41+113) [ sum of angles in a triangle)
<S = 180 - 154 = 26°
Next is to find length of ST, using the law of sines: a/sin A = b/sinc B = c/sin C
Let a = RT = 28m
A = <S = 26°
b = ST
B = <R = 41°
Thus, we have:
28/sin(26°) = b/sin(41°)
Cross multiply
28*sin(41°) = b*sin(26°)
28*0.6561 = b*0.4384
18.3708 = b*0.4384
Divide both sides by 0.4384 to make b the subject of formula
18.3708/0.4384 = b
41.9041971 = b
b ≈ 42m (rounded to nearest meter)
Length of ST to nearest meter = 42 meters