Answer:
![F.V.=(P[(1+i)^n-1])/(i)](https://img.qammunity.org/2021/formulas/mathematics/high-school/sr0nmswr31g2mdkv4p7jear1o7hsxzfarl.png)
Explanation:
Sum of finite geometric series,
![S_n=(a(r^n-1))/(r-1)](https://img.qammunity.org/2021/formulas/mathematics/high-school/r168r4z6g2z33xj98aph8aise2h05gapzg.png)
- Substitute P for the value of a
- Substitute 1 + i for r
That gives us:
![F.V.=(P[(1+i)^n-1])/((1+i)-1)\\\\=(P[(1+i)^n-1])/(1+i-1)\\\\F.V.=(P[(1+i)^n-1])/(i)](https://img.qammunity.org/2021/formulas/mathematics/high-school/9oynh2cy8szsxs5ez7kud6gmu6qvyfhqnt.png)
Where:
- F.V.=Future Value
- P=Recurring deposits.
- i=Interest Rate
- n=Number of deposits
This is the formula that is used to determine the future value of a structured savings plan with recurring deposits.