113k views
1 vote
Use the formula for the sum of a finite series and substitute P for the value of a, the monthly payment you just found. Also, substitute 1 + i for the r value in the formula since the rate of increase is now 1 + the interest rate = i. Now rewrite the formula with the substituted values in simplest form. That simplified formula will determine the future value of a structured savings plan with recurring deposits.

User JDOaktown
by
8.1k points

1 Answer

6 votes

Answer:


F.V.=(P[(1+i)^n-1])/(i)

Explanation:

Sum of finite geometric series,
S_n=(a(r^n-1))/(r-1)

  • Substitute P for the value of a
  • Substitute 1 + i for r

That gives us:


F.V.=(P[(1+i)^n-1])/((1+i)-1)\\\\=(P[(1+i)^n-1])/(1+i-1)\\\\F.V.=(P[(1+i)^n-1])/(i)

Where:

  • F.V.=Future Value
  • P=Recurring deposits.
  • i=Interest Rate
  • n=Number of deposits

This is the formula that is used to determine the future value of a structured savings plan with recurring deposits.

User Epigene
by
8.2k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.