Answer:
The required matrix is
![A = \left[\begin{array}{ccc}1.07&-0.21\\-0.86&1.35\end{array}\right]](https://img.qammunity.org/2021/formulas/mathematics/college/etpri9z2pipooywpfay7l1vtq0r2lxuplz.png)
Explanation:
Matrix of rotation:
![P = \left[\begin{array}{ccc}cos\pi/4&-sin\pi/4\\sin\pi/4&cos\pi/4\end{array}\right]](https://img.qammunity.org/2021/formulas/mathematics/college/9v4b7j09odti8qgsyi0r5m6w884inmqmaa.png)
![P = \left[\begin{array}{ccc}1/√(2) &-1/√(2) \\1/√(2) &1/√(2)\end{array}\right]](https://img.qammunity.org/2021/formulas/mathematics/college/wdzhtwjtlsq3qjdl5rwbd2750azhuy2see.png)
x' + iy' = (x + iy)(cosθ + isinθ)
x' = x cosθ - ysinθ
y' = x sinθ + ycosθ
In matrix form:
![\left[\begin{array}{ccc}x'\\y'\end{array}\right] = \left[\begin{array}{ccc}cos\theta&-sin\theta\\sin \theta&cos\theta\end{array}\right] \left[\begin{array}{ccc}x\\y\end{array}\right]](https://img.qammunity.org/2021/formulas/mathematics/college/zsdktccesf3twscl7p1heju2cm7u7swx5q.png)
The matrix stretches by 1.8 on the x axis and 0.7 on the y axis
i.e. x' = 1.8x
y' = 0.7y
![\left[\begin{array}{ccc}x'\\y'\end{array}\right] = \left[\begin{array}{ccc}1.8&0\\0&0.7\end{array}\right] \left[\begin{array}{ccc}x\\y\end{array}\right]](https://img.qammunity.org/2021/formulas/mathematics/college/nh1guxjchlr1x99zacp63lz03tyalxhvx2.png)
![Q = \left[\begin{array}{ccc}1.8&0\\0&0.7\end{array}\right]](https://img.qammunity.org/2021/formulas/mathematics/college/no8uv58inss4kn3wvthnzfy73rlrj66vbo.png)
According to the question, the result is rotated by pi/3 clockwise radians
![R = \left[\begin{array}{ccc}cos(-\pi/3)& -sin(-\pi/3)\\-sin(\pi/3)&cos(\pi/3)\end{array}\right]](https://img.qammunity.org/2021/formulas/mathematics/college/xlh1gyt7p2zixnpg2w3xhwsewbvtxuj5yn.png)
![R = \left[\begin{array}{ccc}1/2&√(3)/2 \\-√(3)/2 &1/2\end{array}\right]](https://img.qammunity.org/2021/formulas/mathematics/college/qzq22vffjrza134zuhenvufwifi1xtjbww.png)
To get the matrix A, we would multiply matrices R, Q and P together.
![A = RQP = \left[\begin{array}{ccc}1/2&√(3)/2 \\-√(3)/2 &1/2\end{array}\right] \left[\begin{array}{ccc}1.8&0\\0&0.7\end{array}\right] \left[\begin{array}{ccc}1/√(2) &-1/√(2) \\1/√(2) &1/√(2)\end{array}\right]](https://img.qammunity.org/2021/formulas/mathematics/college/khl3h3ku2onpehmlmtlfxalvpk3mdyvfps.png)
![A = \left[\begin{array}{ccc}1.07&-0.21\\-0.86&1.35\end{array}\right]](https://img.qammunity.org/2021/formulas/mathematics/college/etpri9z2pipooywpfay7l1vtq0r2lxuplz.png)