Answer:
Step-by-step explanation:
Maximum occurs when the path difference is an integral multiple of wavelength
Here
- Wavelength,
slit separation and
Order of pattern
Rearrange the equation for
![\begin{aligned}d &=(m \lambda)/(\sin \theta) \\</p><p>\text { Here, } \sin \theta &=(y)/(L) \quad\left(\begin{array}{l}</p><p>\text { Here, } L-\text { separation between slit and screen } \\</p><p>y-\text { Distance between respective fringe from center on screen }\end{array}\right)]()
![d=(m \lambda)/(\left((y)/(L)\right)) \\</p><p>&=(m \lambda L)/(y)](https://img.qammunity.org/2021/formulas/physics/college/t4s9v495y5r1bhnlizhr0sedzh4re8k3gs.png)
Here, order
Due to the fact that there are 11 bright fringes seen, you take
![11-1=10](https://img.qammunity.org/2021/formulas/physics/college/aulwhwulks6n90ccicj0ilepiq0do8lvwq.png)
since starts from 0,1,2,3
Substitute given values
![\begin{aligned}d &=\frac{(10)\left(633 * 10^(-9) \mathrm{m}\right)(3.2 \mathrm{m})}{60 * 10^(-3) \mathrm{m}} \\&=\left(3.376 * 10^(-4) \mathrm{m}\right)\left(\frac{1 \mathrm{mm}}{10^(-3) \mathrm{m}}\right) \\&=0.3376 \mathrm{mm}\end{aligned}](https://img.qammunity.org/2021/formulas/physics/college/cw66d36foz92h3ie6r7det6go7e0c1851x.png)