Answer:
θ = 33.8
a = 3.42 m/s²
Step-by-step explanation:
given data
mass m = 2 kg
coefficient of static friction μs = 0.67
coefficient of kinetic friction μk = 0.25
solution
when block start slide
N = mg cosθ .............1
fs = mg sinθ ...............2
now we divide equation 2 by equation 1 we get

= tanθ
put here value we get
tan θ = 0.67
θ = 33.8
and
when block will slide then we apply newton 2nd law
mg sinθ - fk = ma ...............3
here fk = μk N = μk mg cosθ
so from equation 3 we get
mg sinθ - μk mg cosθ = ma
so a will be
a = (sinθ - μk cosθ)g
put here value and we get
a = (sin33.8 - 0.25 cos33.8) 9.8
a = 3.42 m/s²