Answer and Step-by-step explanation:
The computation is shown below:
Let us assume that
Spam Email be S
And, test spam positive be T
Given that
P(S) = 0.3
![P((T)/(S)) = 0.95](https://img.qammunity.org/2021/formulas/mathematics/college/sdedg80zseefou17zgbkrak50h8jx6j7nj.png)
![P((T)/(S^c)) = 0.05](https://img.qammunity.org/2021/formulas/mathematics/college/tgvjc8g4mgjwozb5ac2cif0uu2f3sjyk6m.png)
Now based on the above information, the probabilities are as follows
i. P(Spam Email) is
= P(S)
= 0.3
![P(S^c) = 1 - P(S)](https://img.qammunity.org/2021/formulas/mathematics/college/q8hevzae52gqqp8speleq53wwgvq5k7wmp.png)
= 1 - 0.3
= 0.7
ii.
![P((S)/(T)) = (P(S\cap\ T)/(P(T))](https://img.qammunity.org/2021/formulas/mathematics/college/jkjueeimc8r16ia2u35h2k9gpcdgx2i699.png)
![= (P((T)/(S)) . P(S) )/(P((T)/(S)) . P(S) + P((T)/(S^c)) . P(S^c) )](https://img.qammunity.org/2021/formulas/mathematics/college/cppus1q8rkhtvc6v6cisa9mupzhgy56cdz.png)
![= (0.95 * 0.3)/(0.95 * 0.3 + 0.05 * 0.7)](https://img.qammunity.org/2021/formulas/mathematics/college/h95odivums1zdrslxfx4crtp4a3wu0zdsb.png)
= 0.8906
iii.
![P((S)/(T^c)) = (P(S\cap\ T^c)/(P(T^c))](https://img.qammunity.org/2021/formulas/mathematics/college/l8hsx255r964bb0m3dyh027ee0ovtx64e9.png)
![= (P((T^c)/(S)) . P(S) )/(P((T^c)/(S)) . P(S) + P((T^c)/(S^c)) . P(S^c) )](https://img.qammunity.org/2021/formulas/mathematics/college/jpk9pbqy5q8y0nlh1f090c3lxhr2vooglv.png)
![= ((1 - 0.95)* 0.3)/( (1 -0.95)0.95 * 0.3 + (1 - 0.05) * 0.7)](https://img.qammunity.org/2021/formulas/mathematics/college/8c8g2kqwac82gxdvvb1bovst1eugmpvu22.png)
= 0.0221
We simply applied the above formulas so that the each part could come