Answer:
The answer is explained below
Step-by-step explanation:
Given that:
1 ft = 0.3048 m, 1 in = 0.0254 m, 1 pound = 4.44822 newton
,
,
,
. P = 2200 lb = 9786 N
The area (A) is given as:
![A=(\pi)/(4) (d_2^2-d_1^2)=(\pi)/(4)(0.19^2-0.17^2)=5.65*10^(-3)m^2](https://img.qammunity.org/2021/formulas/engineering/college/pxg0mj5a3myxo7phg74vvkbzv0beatlfit.png)
The moment of area is given as:
![l=(\pi)/(64) (d_2^4-d_1^4)=(\pi)/(64)(0.19^4-0.17^4)=2.3*10^(-5)m^4](https://img.qammunity.org/2021/formulas/engineering/college/o1cgbdwemthlohzppw9gpkbnjp19lhbdst.png)
The maximum tensile stress is given as:
![\sigma_1=-(P)/(A)+(M((d_2)/(2) ))/(l) =-(9786\ N )/(5.65*10^(-3)m^2)+(11kNm(0.19 \ m)/2)/(2.3*10^(-5)m^4) =-1.73\ MPa+45.4\ MPa=43.67\ MPa\\\sigma_1=43.67\ MPa](https://img.qammunity.org/2021/formulas/engineering/college/b9aql45yraxz0ncf5lkbfzeqqqndpestn6.png)
The maximum compressive stress is given as:
![\sigma_c=-(P)/(A)-(M((d_2)/(2) ))/(l) =-(9786\ N )/(5.65*10^(-3)m^2)-(11kNm(0.19 \ m)/2)/(2.3*10^(-5)m^4) =-1.73\ MPa-45.4\ MPa=47.13\ MPa\\\sigma_c=47.13\ MPa](https://img.qammunity.org/2021/formulas/engineering/college/28qgmy1rj2r66vf2uuf7w9jdjmivdbfmzk.png)
The maximum shear stress is given as:
![\tau_(max)=|(\sigma_c)/(2) |=(47.13\ MPa)/(2)=23.57\ MPa](https://img.qammunity.org/2021/formulas/engineering/college/m4f7a5d57nvyz2wna15mytt6u0wvs5vkee.png)