Answer: a) P(x≤1) = 0.0625
b) P(0.5≤x≤1) = 0.0468
c) P(x>1.5) = 0.8593
d) Median (m) = 3.4641
e) f(x) = 0 x < 0
x/8 0≤x≤4
0 x≥4
Explanation:
a) To calculate the probability of F(x) with x being less or equal 1 is:
P(x≤1) = F(1)
F(1) =
![(1^(2))/(16)](https://img.qammunity.org/2021/formulas/mathematics/college/4pum3c4d1lk5v8ki67971l5v6r95t0ui73.png)
P(x≤1) = 0.0625
b) To calculate probability of F(x) with x being between 0.5 and 1:
P(0.5≤x≤1) = F(x≤1) - F(x≤0.5) = F(1) - F(0.5)
F(1) = 0.0625
F(0.5) =
= 0.0156
P(0.5≤x≤1) = 0.0625 - 0.0156
P(0.5≤x≤1) = 0.0468
c) P(x>1.5) = 1 - P(x≤1.5) = 1 - F(1.5)
F(1.5) = 0.1406
P(x>1.5) = 1 - 0.1406
P(x>1.5) = 0.8593
d) Median is a point in the graph that divides it in half, so to determine the point, here called m:
![\int\limits^m_0 {(x^(2))/(16) } \, dx = (1)/(2)](https://img.qammunity.org/2021/formulas/mathematics/college/m1e4us7oq2smnjdza2yw5nn5pyqcsudcid.png)
![(1)/(16)\int\limits^m_0 {x^(2)} \, dx = (1)/(2)](https://img.qammunity.org/2021/formulas/mathematics/college/dek52b0l7c6xxly6qwuwo3mb64k2hnamz6.png)
![\int\limits^m_0 {x^(2)} \, dx = 8](https://img.qammunity.org/2021/formulas/mathematics/college/9mexbe3ggi4txn5hd8td2i5u70rnm9jhof.png)
![(x^(3))/(3) = 8](https://img.qammunity.org/2021/formulas/mathematics/college/jk6ycw39gxcqz8c9adgdtntrekqkvvv94b.png)
![(m^(3))/(3) - 0 = 8](https://img.qammunity.org/2021/formulas/mathematics/college/yzwcc59oyhjxs9heh6bdgw00cy0zagq09q.png)
m³ = 24
m = 3.4641
The median checkout duration is 3.4641 hours.
e) Density function of a cumulative distribution function (cdf) as well as in a continuous random variable is the first derivative of a function. Then, for this function it is:
f(x) = F'(x)
f(x) = 0 x<0
0≤x≤4
0 x≥4
f) E(X) =
![\int\limits^4_0 {x}f(x) \, dx](https://img.qammunity.org/2021/formulas/mathematics/college/ditslobxlok2wfunxhph7ejlwrb0py18zw.png)
=
![\int\limits^4_0 {x}.(x)/(8) \, dx](https://img.qammunity.org/2021/formulas/mathematics/college/oa1sc7lx0dvdspxfk8uf8tktsl4tazv76p.png)
=
![\int\limits^4_0 {(x^(2))/(8) \, dx](https://img.qammunity.org/2021/formulas/mathematics/college/dstd0sa0h4gl929wyji0b7co41fpj71da8.png)
=
![(x^(3))/(24)](https://img.qammunity.org/2021/formulas/mathematics/college/9m9s15ptn11g316ezy7dtohp2obtr51god.png)
=
![(4^(3))/(24) - (0^(3))/(24)](https://img.qammunity.org/2021/formulas/mathematics/college/h34dl59c9v8cqpn8ip5t3enyc7meaxka9e.png)
E(X) = 2.6667