225k views
3 votes
A boat starts off 34 miles directly west from the city of Uniontown. It travels due north at a speed of 41 miles per hour. After travelling 44 miles, how fast (in radians per hour) is the angle opposite the northward path changing?

1 Answer

1 vote

Given:

Let x=34 miles

y=44 miles


(dy)/(dt)=41 miles/hr

To find:


(d\theta)/(dt)

Solution:


Hypotenuse=√((base)^2+(Perpendicular\;side)^2)

Using the formula


Hypotenuse=√((34)^2+(44)^2)=55.6 miles


sec\theta=(Hypotenuse)/(Base)

Using the formula


sec\theta=(55.6)/(34)


tan\theta=(Perpendicular\;side)/(Base)

Using the formula


tan\theta=(y)/(34)

Differentiate w.r.t t


sec^2\theta(d\theta)/(dt)=(1)/(34)(dy)/(dt)

Using the formula


(d(tanx))/(dx)=sec^2 x

Substitute the values


((55.6)/(34))^2* (d\theta)/(dt)==(1)/(34)* 41


(d\theta)/(dt)=(41* (34)^2)/(34* (55.6)^2)


(d\theta)/(dt)=0.45 rad/hour

A boat starts off 34 miles directly west from the city of Uniontown. It travels due-example-1
User Mannaroth
by
3.7k points