Answer:
1. λ₁ = 4.97 x 10⁻⁷ m = 497 nm
2. ∅ = 3.96 x 10⁻¹⁹ J = 2.475 eV
Step-by-step explanation:
Using Einstein's Photoelectric Equation:
Energy Given by Photon = Work Function + K.E of Electron
hc/λ = ∅ + K.E
where,
h = Plank's Constant = 6.63 x 10⁻³⁴ J.s
c = speed of light = 3 x 10⁸ m/s
λ = wavelength of light
∅ = work function
K.E = Kinetic Energy of Electron
FOR 1ST SCENARIO:
K.E = 0.65 eV
Therefore,
hc/λ₁ = ∅ + 0.65 eV ------- equation 1
FOR 2ND SCENARIO:
λ₂ = (2/3)λ₁
K.E₂ = 1.9 eV
Therefore,
hc/(2/3)λ₁ = ∅ + 1.9 eV
(3/2)hc/λ₁ = ∅ + 1.9 eV ------- equation 2
1.
Subtracting equation 1 from equation 2, we get:
(3/2)hc/λ₁ - hc/λ₁ = ∅ + 1.9 eV - ∅ - 0.65 eV
(1/2)hc/λ₁ = 1.25 eV
(1/2)(6.63 x 10⁻³⁴ J.s)(3 x 10⁸ m/s)/λ₁ = (1.25 eV)(1.6 x 10⁻¹⁹ J/1 eV)
λ₁ = (9.945 x 10⁻²⁶ J.m)/(2 x 10⁻¹⁹ J)
λ₁ = 4.97 x 10⁻⁷ m = 497 nm
2.
Using values in equation 1:
(6.63 x 10⁻³⁴ J.s)(3 x 10⁸ m/s)/(4.97 x 10⁻⁷ m) = ∅ + (0.65 eV)(1.6 x 10⁻¹⁹ J/1 eV)
4 x 10⁻¹⁹ J - 1.04 x 10⁻¹⁹ J = ∅
∅ = 3.96 x 10⁻¹⁹ J = 2.475 eV