Answer:
A) See Annex
B) Fq₁₂ = K * Q₁*Q₂ /16 [N] (repulsion force)
C) Fq₃₂ = K * Q₃*Q₂ /16 [N] (repulsion force)
D) Fq₄₂ = K * Q₄*Q₂ /32 [N] (attraction force)
E) Net force (its components)
Fnx = (2,59/64 )* K*Q² [N] in direction of original Fq₃₂
Fny =(2,59/64 )* K*Q² [N] in direction of original Fq₁₂
Step-by-step explanation:
For calculation of d (diagonal of the square, we apply Pythagoras Theorem)
d² = L² + L² ⇒ d² = 2*L² ⇒ d = √2*L² ⇒ d= (√2 )*L
d = 4√2 units of length (we will assume meters, to work with MKS system of units)
B) Force of Q₁ exerts on charge Q₂
Fq₁₂ = K * Q₁*Q₂ /(L)² Fq₁₂ = K * Q₁*Q₂ /16 (repulsion force in the direction indicated in annex)
C) Force of Q₃ exerts on charge Q₂
Fq₃₂ = K * Q₃*Q₂ /(L)² Fq₃₂ = K * Q₃*Q₂ /16 (repulsion force in the direction indicated in annex)
D) Force of -Q₄ exerts on charge Q₂
Fq₄₂ = K * Q₄*Q₂ / (d)² Fq₄₂ = K * Q₄*Q₂ /32 (Attraction force in the direction indicated in annex)
E) Net force in the case all charges have the same magnitude Q (keeping the negative sign in Q₄)
Let´s take the force that Q₄ exerts on Q₂ and Q₂ = Q ( magnitude) and
Q₄ = -Q
Then the force is:
F₄₂ = K * Q*Q / 32 F₄₂ = K* Q²/32 [N]
We should get its components
F₄₂(x) = [K*Q²/32 ]* √2/2 and so is F₄₂(y) = [K*Q²/32 ]* √2/2
Note that this components have opposite direction than forces Fq₁₂ and
Fq₃₂ respectively, and that Fq₁₂ and Fq₃₂ are bigger than F₄₂(x) and F₄₂(y) respectively
In new conditions
Fq₁₂ = K * Q₁*Q₂ /16 becomes Fq₁₂ = K * Q²/ 16 [N] and
Fq₃₂ = K* Q₃*Q₂ /16 becomes Fq₃₂ = K* Q² /16 [N]
Note that Fq₁₂ and Fq₃₂ are bigger than F₄₂(x) and F₄₂(y) respectively
Then over x-axis we subtract Fq₃₂ - F₄₂(x) = Fnx
and over y-axis, we subtract Fq₁₂ - F₄₂(y) = Fny
And we get:
Fnx = K* Q² /16 - [K*Q²/32 ]* √2/2 ⇒ Fnx = K*Q² [1/16 - √2/64]
Fnx = (2,59/64 )* K*Q²
Fny has the same magnitude then
Fny =(2,59/64 )* K*Q²
The fact that Fq₁₂ and Fq₃₂ are bigger than F₄₂(x) and F₄₂(y) respectively, means that Fnx and Fny remains as repulsion forces