203k views
0 votes
A bowling ball traveling with constant speed hits pins at the end of a bowling lane 16.5m long. The bowler hears the sound of the ball hitting the pins 2.65s after the ball is release from her hand. What is the speed of the ball down the lane, assuming that the speed of sound is 340.0m/s

User Hmp
by
5.3k points

1 Answer

2 votes

Answer: The speed of the ball is 7.64 m/s.

Step-by-step explanation:

The distance between the player and the pins is 16.5m

if the velocity of the ball is V, then the time in which the ball reaches the pins is:

T = 16.5/V

Now, after this point, the sound needs

T' = 16,5/340 = 0.049 seconds to reach the player, this means that the time in that the ball needs to reach te pins is:

2.65 s - 0.49s = 2.16s

Then we have:

T = 2.16s = 16.5/V

V = 16.5/2.16 m/s = 7.64 m/s

User Amr Lotfy
by
5.2k points