Answer:
Option C is correct.
The sampling distribution with sample size n=100 will have less variability.
Explanation:
Complete Question
Consider random samples selected from the population of all female college soccer players in the United States. Assume the mean height of female college soccer players in the United States is 66 inches and the standard deviation is 3.5 inches. Which do you expect to have less variability (spread): a sampling distribution with sample size n = 100 or a sample size of n = 20.
A. Both sampling distributions will have the same variability.
B.The sampling distribution with sample size n=20 will have less variability
C. The sampling distribution with sample size n =100 will have less variability
Solution
The central limit theorem allows us to say that as long as
- the sample is randomly selected from the population distribution with each variable independent of each other and with the sample having an adequate enough sample size.
- the random sample is normal or almost normal which is guaranteed if the population distribution that the random sample was extracted from is normal or approximately normal,
1) The mean of sampling distribution (μₓ) is approximately equal to the population mean (μ)
μₓ = μ = 66 inches
2) The standard deviation of the sampling distribution or the standard error of the sample mean is related to the population standard deviation through
σₓ = (σ/√N)
where σ = population standard deviation = 3.5 inches
N = Sample size
And the measure of variability for a sampling distribution is the magnitude of the standard deviation of the sampling distribution.
For sampling distribution with sample size n = 100
σₓ = (3.5/√100) = 0.35 inch
For sampling distribution with sample size n = 20
σₓ = (3.5/√20) = 0.7826 inch
The standard deviation of the sampling distribution with sample size n = 20 is more than double that of the sampling distribution with sample size n = 100, hence, it is evident that the bigger the sample size, the lesser the standard deviation of the sampling distribution and the lesser the variability that the sampling distribution shows.
Hope this Helps!!!