23.1k views
0 votes
A double slit illuminated with light of wavelength 588 nm forms a diffraction pattern on a screen 11.0 cm away. The slit separation is 2464 nm. What is the distance between the third and fourth bright fringes away from the central fringe

User Rleir
by
4.6k points

1 Answer

5 votes

Answer:


y_(4)-y_(3)=35.22-11.27=23.95 \mathrm{cm}

Step-by-step explanation:

Given that

Wavelength
\lambda=588 \mathrm{nm}

slit separation
\mathrm{d}=2464 \mathrm{nm}

slit screen distance
\mathrm{D}=11 \mathrm{cm}

We know that for double slit the maxima condition is that


\operatorname{dsin} \theta=m \lambda


\sin \theta=(m \lambda)/(d)


\theta=\sin ^(-1)\left(\frac{\mathrm{m} \lambda}{\mathrm{d}}\right)

For small angle approximation,
\sin \theta \approx \tan \theta \approx \theta


\tan \theta=(y_(m))/(D)


y_(m)=D * \tan \left[\sin ^(-1)\left((m \lambda)/(d)\right)\right]

Now
y_(4)
y_(4)=D * \tan \left[\sin ^(-1)\left((4 \lambda)/(d)\right)\right]=11 * \tan \left[\sin ^(-1)\left(\frac{4 * 588 \mathrm{nm}}{2464 \mathrm{nm}}\right)\right]=35.22 \mathrm{cm}

Again
y_(3)=D * \tan \left[\sin ^(-1)\left((3 \lambda)/(d)\right)\right]=11 * \tan \left[\sin ^(-1)\left(\frac{3 * 588 \mathrm{nm}}{2464 \mathrm{nm}}\right)\right]=11.27 \mathrm{cm}

Hence
y_(4)-y_(3)=35.22-11.27=23.95 \mathrm{cm}

User RyanNerd
by
5.0k points