227k views
2 votes
In △ABC, point P∈AC with AP:PC=1:3, point Q∈AB so that AQ:QB=3:4, Find the ratios A(PBQ) : A(PBC) and A(AQP) : A(ABC)

1 Answer

3 votes

Answer:

The ratio APBQ : APBC is 4:21, AAQP : AABC is 3:28

Explanation:

Data provided in the question

AP : PC = 1 : 3

So let us assume AP = x and PC = 3x.

And, If AQ : QB = 3 : 4

So, let us assume AQ = 3y and QB = 4y.

Now we have to find the area of ΔAQP and ΔABC


A_(AQP)=(1)/(2)\cdot AP\cdot AQ\cdot \sin\angle A=(1)/(2)\cdot x\cdot 3y\cdot \sin\angle A;


A_(ABC)=(1)/(2)\cdot AC\cdot AB\cdot \sin\angle A=(1)/(2)\cdot (x+3x)\cdot (3y+4y)\cdot \sin\angle A=(1)/(2)\cdot 4x\cdot 7y\cdot \sin\angleA

Therefore


(A_(APQ))/(A_(ABC))=((1)/(2)\cdot x\cdot 3y\cdot \sin\angle A)/((1)/(2)\cdot 4x\cdot 7y\cdot \sin\angleA)=(3)/(28).

Now


(A_(APQ))/(A_(ABP))=((1)/(2)\cdot x\cdot 3y\cdot \sin\angle A)/((1)/(2)\cdot x\cdot (3y+4y)\cdot \sin\angle A)=(3)/(7).

Now after solving these two ratios we can find


A_(ABP)=(7)/(3)A_(APQ)\Rightarrow A_(PBQ)=A_(APB)-A_(APQ)=(7)/(3)A_(APQ)-A_(APQ)=(4)/(3)A_(APQ)


A_(ABC)=(28)/(3)A_(APQ)\Rightarrow A_(PBC)=A_(ABC)-A_(APB)=(28)/(3)A_(APQ)-(7)/(3)A_(APQ)=7A_(APQ).

Therefore


(A_(PBQ))/(A_(PBC))=((4)/(3)A_(APQ))/(7A_(APQ))=(4)/(21).

Hence, we applied the above equation so that we can get to know the ratios

User Kerokero
by
8.6k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.