Answer:
![\frac{30\,\text{mi}}{1\,\text{h}}=\frac{900\,\text{mi}}{t}](https://img.qammunity.org/2021/formulas/mathematics/high-school/re3p3dce0rq425ww37qo4wmfzj33caydjw.png)
Explanation:
Since you have miles in the numerator of your rate, you need miles in the numerator of the equivalent fraction:
![\frac{30\,\text{mi}}{1\,\text{h}}=\frac{900\,\text{mi}}{t}](https://img.qammunity.org/2021/formulas/mathematics/high-school/re3p3dce0rq425ww37qo4wmfzj33caydjw.png)
This can be rearranged to ...
![\frac{t}{1\,\text{h}}=\frac{900\,\text{mi}}{30\,\text{mi}}=30](https://img.qammunity.org/2021/formulas/mathematics/high-school/kymxu4i4h7aygfp0br9ntby7j5ugzetihm.png)
Then, multiplying by 1 h gives the solution ...
t = 30 h
It takes 30 hours to travel 900 miles at 30 miles per hour.