194k views
3 votes
A point is chosen at random inside a triangle with vertices at (0, 0), (0, 8), and (8, 0). The continuous random variable ???? denotes the x-coordinate of that point.

a) Find the probability that ???? is less than 5.

b) Find the cumulative distribution function (i.e. P(???? ≤ x) ).

c) Find the probability density function.

d) Find the average value of X.

User Quadwwchs
by
5.3k points

1 Answer

5 votes

Assuming all points in the triangle
T are uniformly distributed, we have the joint density


f_(X,Y)(x,y)=\begin{cases}\frac1A&\text{for }(x,y)\in T\\0&\text{otherwise}\end{cases}

where
A=\frac{8^2}2=32 is the area of the triangle
T.

(a)


P(X<5)=\displaystyle\iint_(T^*)f_(X,Y)(x,y)\,\mathrm dy\,\mathrm dx

(where
T^* is the portion of
T for which
x is between 0 and 5)


P(X<5)=\displaystyle\frac1{32}\int_0^5\int_0^(8-x)\mathrm dy\,\mathrm dx


P(X<5)=\displaystyle\frac1{32}\int_0^5(8-x)\,\mathrm dx


P(X<5)=\frac1{32}\cdot\frac{55}2=\boxed{(55)/(64)}

(b) Generalizing the previous result, we have


P(X\le x^*)=\displaystyle\iint_(T^*)f_(X,Y)(x,y)\,\mathrm dy\,\mathrm dx

(this time with
T^* being the portion of
T where
0\le x\le x^* for some
x^* between 0 and 8)


P(X\le x^*)=\displaystyle\frac1{32}\int_0^(x^*)\int_0^(8-x)\mathrm dy\,\mathrm dx


P(X\le x^*)=\displaystyle\frac1{32}\int_0^(x^*)(8-x)\,\mathrm dx


P(X\le x^*)=\displaystyle\frac1{32}\left(8x^*-\frac{(x^*)^2}2\right)

That is, the CDF of
X is


P(X\le x)=\begin{cases}\frac{8x-\frac{x^2}2}{32}&amp;\text{for }0\le x\le8\\0&amp;\text{otherwise}\end{cases}

or


\boxed{P(X\le x)=\begin{cases}(16x-x^2)/(64)&amp;\text{for }0\le x\le8\\0&amp;\text{otherwise}\end{cases}}

(c) Obtain the PDF by differentiating the CDF:


f_X(x)=(\mathrm d)/(\mathrm dx)P(X\le x)


\boxed{f_X(x)=\begin{cases}(8-x)/(32)&amp;\text{for }0<x<8\\0&amp;\text{otherwise}\end{cases}}

(d) Compute the expectation of
X:


E[X]=\displaystyle\int_0^8xf_X(x)\,\mathrm dx


E[X]=\displaystyle\frac1{32}\int_0^8x(8-x)\,\mathrm dx=\boxed{\frac83}

User Rongyan Xia
by
6.2k points