Assuming all points in the triangle
are uniformly distributed, we have the joint density
![f_(X,Y)(x,y)=\begin{cases}\frac1A&\text{for }(x,y)\in T\\0&\text{otherwise}\end{cases}](https://img.qammunity.org/2021/formulas/mathematics/college/t4id8u4861ah83zbn5odp51r7ga12oo0qi.png)
where
is the area of the triangle
.
(a)
![P(X<5)=\displaystyle\iint_(T^*)f_(X,Y)(x,y)\,\mathrm dy\,\mathrm dx](https://img.qammunity.org/2021/formulas/mathematics/college/7sqz5crxax84xiyfkn3233tddt696eks7y.png)
(where
is the portion of
for which
is between 0 and 5)
![P(X<5)=\displaystyle\frac1{32}\int_0^5\int_0^(8-x)\mathrm dy\,\mathrm dx](https://img.qammunity.org/2021/formulas/mathematics/college/r8ugutov4hgpv6zq45aqc8vhjy7ubsp0yo.png)
![P(X<5)=\displaystyle\frac1{32}\int_0^5(8-x)\,\mathrm dx](https://img.qammunity.org/2021/formulas/mathematics/college/ydlok43iiey2u6w3izs6ckp7yxyzdswxv0.png)
![P(X<5)=\frac1{32}\cdot\frac{55}2=\boxed{(55)/(64)}](https://img.qammunity.org/2021/formulas/mathematics/college/uwigjh869icwqc8gkgs0xbyqnckyxrfwnm.png)
(b) Generalizing the previous result, we have
![P(X\le x^*)=\displaystyle\iint_(T^*)f_(X,Y)(x,y)\,\mathrm dy\,\mathrm dx](https://img.qammunity.org/2021/formulas/mathematics/college/12pvjh8sbp5xxb7atrcomwauyg8sbali0s.png)
(this time with
being the portion of
where
for some
between 0 and 8)
![P(X\le x^*)=\displaystyle\frac1{32}\int_0^(x^*)\int_0^(8-x)\mathrm dy\,\mathrm dx](https://img.qammunity.org/2021/formulas/mathematics/college/yablu66f35eye5cd4nfjpyd6549iv3rgs2.png)
![P(X\le x^*)=\displaystyle\frac1{32}\int_0^(x^*)(8-x)\,\mathrm dx](https://img.qammunity.org/2021/formulas/mathematics/college/7cmw3d57rthg5piezao9ly5njswr1rf37c.png)
![P(X\le x^*)=\displaystyle\frac1{32}\left(8x^*-\frac{(x^*)^2}2\right)](https://img.qammunity.org/2021/formulas/mathematics/college/tkswe548n4v1kq3e4njmslk1hdi11eevnf.png)
That is, the CDF of
is
![P(X\le x)=\begin{cases}\frac{8x-\frac{x^2}2}{32}&\text{for }0\le x\le8\\0&\text{otherwise}\end{cases}](https://img.qammunity.org/2021/formulas/mathematics/college/bjb7kil22n77zf2lu0376tnof6h7beokyo.png)
or
![\boxed{P(X\le x)=\begin{cases}(16x-x^2)/(64)&\text{for }0\le x\le8\\0&\text{otherwise}\end{cases}}](https://img.qammunity.org/2021/formulas/mathematics/college/a61jdj1xcf6xur6fhnmdoq9hu81mecr2ig.png)
(c) Obtain the PDF by differentiating the CDF:
![f_X(x)=(\mathrm d)/(\mathrm dx)P(X\le x)](https://img.qammunity.org/2021/formulas/mathematics/college/w0rju5e93qrf2wi5gbp252g740ple5ccmt.png)
![\boxed{f_X(x)=\begin{cases}(8-x)/(32)&\text{for }0<x<8\\0&\text{otherwise}\end{cases}}](https://img.qammunity.org/2021/formulas/mathematics/college/be6227upv9ljhgu3nexpm476o5xnispesu.png)
(d) Compute the expectation of
:
![E[X]=\displaystyle\int_0^8xf_X(x)\,\mathrm dx](https://img.qammunity.org/2021/formulas/mathematics/college/pwtzsbe81f6o7grr40rozx9ia08aei4z8n.png)
![E[X]=\displaystyle\frac1{32}\int_0^8x(8-x)\,\mathrm dx=\boxed{\frac83}](https://img.qammunity.org/2021/formulas/mathematics/college/qjlc5cuzhdxpcq657kdbgpzdrzb79j6kws.png)