Answer:
A. Using a 90% confidence level (instead of 95%)
D. Using a sample size of 90 employees (instead of 60)
Explanation:
The margin of error of a confidence interval is given by:
![M = z*(\sigma)/(√(n))](https://img.qammunity.org/2021/formulas/mathematics/college/cvh8tdoppqkhyobio78yaazk1nqj1870w9.png)
In which z is related to the confidence level,
is the standard deviation of the population and n is the size of the sample.
The higher the margin of error, the less precise the confidence interval is.
We have:
A 95% confidence interval, with a sample of 60.
We want to make it more precise:
Two options, decrease z(decrease the confidence level), or increase n(increase the sample size).
So the correct options are:
A. Using a 90% confidence level (instead of 95%)
D. Using a sample size of 90 employees (instead of 60)