197k views
1 vote
The makers of a soft drink want to identify the average age of its consumers. A sample of 25 consumers was taken. The average age in the sample was 31 years with a standard deviation of 3.8 years.The Margin of error of the 99% confidence interval for the average age of the consumers is a.1.90 years b.2.13 years c.4.10 years d.1.65 years

User Karlth
by
5.1k points

1 Answer

5 votes

Answer:

a.1.90 years

Explanation:

We have that to find our
\alpha level, that is the subtraction of 1 by the confidence interval divided by 2. So:


\alpha = (1-0.99)/(2) = 0.005

Now, we have to find z in the Ztable as such z has a pvalue of
1-\alpha.

So it is z with a pvalue of
1-0.005 = 0.995, so
z = 2.575

Now, find the margin of error M as such


M = z*(\sigma)/(√(n))

In which
\sigma is the standard deviation of the population and n is the size of the sample.

In this question:


n = 25, \sigma = 3.8

So


M = 2.575*(3.8)/(√(25)) = 1.90

So the correct answer is:

a.1.90 years

User Martin Sherburn
by
5.3k points