Step-by-step explanation:
We are given:
sample size= n = 45
sample mean = x = 61,300
sample standard deviation =18,246
Since the population standard deviation is not known we will use t distribution to find the confidence interval.
Confidence interval = 99%
Degrees of freedom= n - 1 = 45 – 1 = 44
Critical t value = 2.692
The 99% confidence interval will be:
![(x-t_(critical)* (s)/( √(n) ), x+t_(critical)* (s)/( √(n) )) \\ \\ (61300-2.692* (18246)/( √(45) ), 61300+2.692* (18246)/( √(45) )) \\ \\ (53978,68622)](https://img.qammunity.org/2021/formulas/sat/college/cfeqg8hzzjdjqild60kb1dl8vstfzltax2.png)
Thus, the 99% confidence interval for the population mean is:
53978 to 68622