Answer:
he domain of the composition is all real x values except for x = -1
In other words:
![\left \\, x \\eq -1 \right \}](https://img.qammunity.org/2021/formulas/mathematics/college/ybmuc4hxe9xtaat2n9gg3xlotx7nta9dpu.png)
Explanation:
Let's find the composition
in order to answer about its domain (where on the Real number set the function is defined), give the two functions:
and
:
![f(g(x))=(1)/(g(x)+4) \\f(g(x))=(1)/((8)/(x-1) +4) \\f(g(x))=(1)/((8+4(x-1))/(x-1) )\\f(g(x))=(x-1)/(8+4x-4) \\f(g(x))=(x-1)/(4+4x) \\](https://img.qammunity.org/2021/formulas/mathematics/college/zjo0qfmgju0kdidckk7axd6k8lv3qk4t7p.png)
This rational function is defined for every real number except when the denominator adopts the value zero. Such happens when:
![4+4x=0\\4x=-4\\x=-1](https://img.qammunity.org/2021/formulas/mathematics/college/zsnawzoq8xmdivugn3gnb8kcxrcj5w78uv.png)
So the domain of the composition is all real x values except for x = -1