185k views
5 votes
The blenders produced by a company have a normally distributed life span with a mean of 8.2 years and a standard deviation of 1.3 years. What warranty should be provided so that the company is replacing at most 6% of their blenders sold?

1 Answer

2 votes

Answer:

A warranty of 6.185 years should be provided.

Explanation:

When the distribution is normal, we use the z-score formula.

In a set with mean
\mu and standard deviation
\sigma, the zscore of a measure X is given by:


Z = (X - \mu)/(\sigma)

The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.

In this question, we have that:


\mu = 8.2, \sigma = 1.3

What warranty should be provided so that the company is replacing at most 6% of their blenders sold?

The warranty should be the 6th percentile, which is X when Z has a pvalue of 0.06. So X when Z = -1.55.


Z = (X - \mu)/(\sigma)


-1.55 = (X - 8.2)/(1.3)


X - 8.2 = -1.55*1.3


X = 6.185

A warranty of 6.185 years should be provided.

User Various
by
3.7k points