Answer:
![A(t)=300-290e^{-(t)/(60)}](https://img.qammunity.org/2021/formulas/mathematics/college/5ybj2ao8iey77wcnt1ao3vmy1dr8a3lgbf.png)
Explanation:
The volume of fluid in the tank = 300 Liters
Initial amount of Salt in the tank, A(0)=10 grams
Change in the Amount of Salt in the Tank
![(dA)/(dt)=R_(in)-R_(out)](https://img.qammunity.org/2021/formulas/mathematics/college/djs0cvn00q5epp22yg6v2sbub8924moglm.png)
Rate In =(concentration of salt in inflow)(input rate of brine)
![R_(in)=(1(gram)/(L))( 5(L)/(min))=5(grams)/(min)](https://img.qammunity.org/2021/formulas/mathematics/college/7y5sfk4wfrkiswtyd0z9ael4vj2qe8q2io.png)
Rate Out =(concentration of salt in outflow)(output rate of brine)
![R_(out)=((A(t))/(300))( 5(L)/(min))=(A(t))/(60)](https://img.qammunity.org/2021/formulas/mathematics/college/x6mnks4h7ddvjvmqpd0m486buezs3zo1lv.png)
Therefore:
![(dA)/(dt)=5-(A(t))/(60)\\$Rearranging, we have:\\(dA)/(dt)+(A(t))/(60)=5](https://img.qammunity.org/2021/formulas/mathematics/college/vrg66io5uf3zjn11zeg8z2p9rijzy3tnsk.png)
We solve the resulting linear differential equation for A(t)
![\text{The integrating factor: } e^{\int (1)/(60)dt} =e^{(t)/(60)}\\$Multiplying by the integrating factor all through\\(dA)/(dt)e^{(t)/(60)}+(A)/(60)e^{(t)/(60)}=5e^{(t)/(60)}\\(Ae^{(t)/(60)})'=5e^{(t)/(60)}](https://img.qammunity.org/2021/formulas/mathematics/college/tvg1k4uo6igqxd4huw5d6u78rybqjrefkb.png)
Taking the integral of both sides
![\int(Ae^{(t)/(60)})'=\int 5e^{(t)/(60)} dt\\Ae^{(t)/(60)}=5*60e^{(t)/(60)}+C, $(C a constant of integration)\\Ae^{(t)/(60)}=300e^{(t)/(60)}+C\\$Divide all through by e^{(t)/(60)}\\A(t)=300+Ce^{-(t)/(60)}](https://img.qammunity.org/2021/formulas/mathematics/college/6lxo1pskikpfn9dpjae1lsqskrrbb7fap4.png)
Recall that when t=0, A(t)=10 grams (our initial condition)
![10=300+Ce^{-(0)/(60)}\\10-300=Ce^0\\C=-290](https://img.qammunity.org/2021/formulas/mathematics/college/jl2rgamkps0j1bl30rfbta0po1ob42optn.png)
Therefore, the number A(t) of grams of salt in the tank at time t is:
![A(t)=300-290e^{-(t)/(60)}](https://img.qammunity.org/2021/formulas/mathematics/college/5ybj2ao8iey77wcnt1ao3vmy1dr8a3lgbf.png)