Answer:
![1\ inch = 2\ feet](https://img.qammunity.org/2021/formulas/mathematics/college/962e6hpb1dkdb7ifikz5pulys3bqoqboz1.png)
Explanation:
Given:
![Real\ tank\ measurement\ = 24\ feet](https://img.qammunity.org/2021/formulas/mathematics/college/xswpqfyzwj41sas1ntxvarjtdyz36pve18.png)
![Scale\ measurement\ = 12\ inches](https://img.qammunity.org/2021/formulas/mathematics/college/sxd5wvlcsnno1ufqixb7opnhrt5lmoc6u2.png)
Required:
Scale Ratio.
To get the scale ratio, we simply divide the actual measurement by the scale measurement
This is done as follows:
![Scale\ Ratio = (Actual\ Measurement)/(Scale\ Measurement)](https://img.qammunity.org/2021/formulas/mathematics/college/89osemxj0gvgndcades8uv3i0bhs1m07ku.png)
![Scale\ Ratio\ = (24\ feet)/(12\ inches)](https://img.qammunity.org/2021/formulas/mathematics/college/zgi7pt18nuiojirwbw3mvjqj58w2mw0aop.png)
[Divide numerator and denominator by 12]
![Scale\ Ratio\ = (2\ feet)/(1\ inch)](https://img.qammunity.org/2021/formulas/mathematics/college/jo8ib71i64jjeawdv9t2uns3tapyt1jgev.png)
[Convert the above expression to ratio]
![Scale\ Ratio = 2\ feet : 1\ inch](https://img.qammunity.org/2021/formulas/mathematics/college/8hvd9mjfzlxf2b64b31qazfpjkepeqgdaf.png)
The interpretation of this is that 1 inch on the scale measurement represent 2 feet on the actual measurements