Answer:
![(2, 17)](https://img.qammunity.org/2021/formulas/mathematics/high-school/1f48uk9ykgqmdohgzvsui5bkgzzhcdnyt8.png)
Explanation:
A parabola has the general function:
![f(x)=ax^2+bx+c](https://img.qammunity.org/2021/formulas/mathematics/middle-school/hj2cyo9lipsf2imfe8tb04vftddbodxbcu.png)
In this case we have:
![f(x) = x^2 - 4x + 21](https://img.qammunity.org/2021/formulas/mathematics/high-school/5gestsrt12jnpd5z2z40xqv1lxzwscrizy.png)
where
![a=1](https://img.qammunity.org/2021/formulas/mathematics/middle-school/5oxpt0qyc43lnwntseh2gtnbwlxpyz6p09.png)
![b=-4](https://img.qammunity.org/2021/formulas/mathematics/high-school/hde9aj77zor7jjcn776yx3td0xegossx3n.png)
![c=21](https://img.qammunity.org/2021/formulas/mathematics/high-school/rc0h5l2owx75rzergnc94lkc4f0tzwgff8.png)
the vertex of a parabola is in the coordinates:
![((-b)/(2a), (-b^2+4ac)/(4a) )](https://img.qammunity.org/2021/formulas/mathematics/high-school/5enob5nzmg1trb7ubwnxqldnr29qkm0n8q.png)
substituting all of the known values, we get the following:
![((-(-4))/(2(1)) ,(-(-4)^2+4(1)(21))/(4(1)) )\\\\((4)/(2) ,(-16+84)/(4) )\\\\\\(2 ,(68)/(4) )\\\\\\(2,17)](https://img.qammunity.org/2021/formulas/mathematics/high-school/j97qevgv9w3uq0xbtetolsn3f07el50i0e.png)
the vertex of
is at the point (2,17) which is the second option.