Answer:
m∠D = 32°
Explanation:
From the figure attached,
In ΔABE,
By the property of a triangle,
m∠AEB + m∠ABE + m∠AEB = 180°
14° + 45° + m∠AEB = 180°
m∠AEB = 180° - 59°
m∠AEB = 121°
Since, m∠AEB = m∠CED = 121° [Vertical angles]
Similarly, in triangle CDE,
m∠ECD + m∠CED + m∠EDC = 180°
27 + 121 + m∠CDE = 180
m∠CDE = 180 - 148
m∠D = 32°