Answer:
a) Mean number of beans = 33.4 per coco pad
b) Standard deviation of the beans = 5.2 per coco pad
Explanation:
Step(i):-
a)
Given data 30, 28, 30, 35, 40, 25, 32, 36, 38 and 40.
mean of beans
x⁻ = ∑x/n
![x^(-) = (30+ 28+30+35+40+25+32+36+38 + 40.)/(10) = 33.4](https://img.qammunity.org/2021/formulas/mathematics/college/8lhqy2ltet80swjhcyw7s4j57n0syzqfgz.png)
Mean number of beans per coco pad = 33.4
step(ii):-
b)
standard deviation
∑(xi - x⁻)² = (30-33.4)²+ (28-33.4)²+(30-33.4)²+(35-33.4)²+(40-33.4)²+(25-33.4)²+(32-33.4)²+(36-33.4)²+ (38-33.4)²+(40-33.4)²
On calculation , we get
∑(xi - x⁻)² = 242.4
standard deviation
=
![\sqrt{(sum((x-x^(-) )^(2) )/(n-1) } = \sqrt{(242.4)/(10-1) } = 5.189](https://img.qammunity.org/2021/formulas/mathematics/college/1euw5knp8s0fl7nfll10qk8c4eq9y0k4ht.png)
Standard deviation of the beans (σ) = 5.2 per coco pad