15.6k views
4 votes
Simplify this expression. (2/x-y) + (3/x+y) - (5/y+x) - (7x-9y/y^2-x^2) = ___________/ y^2 - x^2

Simplify this expression. (2/x-y) + (3/x+y) - (5/y+x) - (7x-9y/y^2-x^2) = ___________/ y-example-1

2 Answers

0 votes

Answer:


\frac{ - 17x + 5y}{ {y}^(2) - {x}^(2) }

Solution,


(2)/(x - y) + (3)/(x + y) - (5)/(y - x) - \frac{7x - 9y}{ {y}^(2) - {x}^(2) } \\ = (2)/(x - y) + (3)/(x + y) - (5)/( - (x - y)) - \frac{7x - 9y}{ {y}^(2) - {x}^(2) } \\ = (2)/(x - y) + (3)/(x + y) + (5)/(x - y) - \frac{7x - 9y}{ {y}^(2) - {x}^(2) } \\ = (2)/(x - y) + (5)/(x - y) + (3)/(x + y) - \frac{7x - 9y}{ {y}^(2) - {x}^(2) } \\ = (2 + 5)/(x - y) + (3)/(x + y) - \frac{7x - 9y}{ {y}^(2) - {x}^(2) } \\ = (7)/(x - y) + (3)/(x + y) - \frac{7x - 9y}{ {y}^(2) - {x}^(2) } \\ = (7(x + y) + 3(x - y))/((x - y)(x + y)) - \frac{7x - 9y}{ {y}^(2) - {x}^(2) } \\ = \frac{7x + 7y + 3x - 3y}{ {x}^(2) - {y}^(2) } - \frac{7x - 9y}{ {y}^(2) - {x}^(2) } \\ = \frac{10x + 4y}{ {x}^(2) - {y}^(2) } - \frac{7x - 9y}{ {y}^(2) - {x}^(2) } \\ = \frac{10x + 4y}{ - ( {y}^(2) - {x)}^(2) } - \frac{7x - 9y}{ {y}^(2) - {x}^(2) } \\ = \frac{ - 10x - 4y - 7x + 9y}{ {y}^(2) - {x}^(2) } \\ = \frac{ - 10x - 7x - 4y + 9y}{ {y}^(2) - {x}^(2) } \\ = \frac{ - 17x + 5y}{ {y}^(2) - {x}^(2) }

hope this helps...

Good luck on your assignment...

User NkS
by
7.5k points
1 vote

Answer:

(5y-17x)/ (y^2-x^2)

Explanation:

(2/x-y) + (3/x+y) - (5/y-x) - (7x-9y/y^2-x^2) =

Get a common denominator of y^2 - x^2

2/ (x-y) = -2 /( y-x) * (y+x)/(y+x) = (-2y -2x) / (y^2 -x^2)

(3/x+y) = 3/ (x+y) * (y-x)/(y-x) = (3y-3x) / (y^2 -x^2)

-5/(y-x) = -5/(y-x) *(y+x)/(y+x) = -5y-5x / (y^2 -x^2)

- (7x-9y/(y^2-x^2) = -7x +9y/ (y^2-x^2)

Combine the numerators since the denominators are equal

-2y -2x +3y-3x-5y-5x-7x+9y

5y-17x

Put this over the denominator

(5y-17x)/ (y^2-x^2)

User Imad Moqaddem
by
7.3k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories