Answer:
The 95% confidence interval for the population proportion of tenth graders reading at or below the eighth grade level is (0.2087, 0.2507).
Explanation:
In a sample with a number n of people surveyed with a probability of a success of
, and a confidence level of
, we have the following confidence interval of proportions.

In which
z is the zscore that has a pvalue of
.
For this problem, we have that:
Suppose a sample of 1537 tenth graders is drawn. Of the students sampled, 1184 read above the eighth grade level. So 1537 - 1184 = 353 read at or below this level. Then

95% confidence level
So
, z is the value of Z that has a pvalue of
, so
.
The lower limit of this interval is:

The upper limit of this interval is:

The 95% confidence interval for the population proportion of tenth graders reading at or below the eighth grade level is (0.2087, 0.2507).