(a) The differential equation is separable, so we separate the variables and integrate:
![(x+1)(dy)/(dx) = xy \implies \frac{dy}y = \frac x{x+1} \, dx = \left(1-\frac1{x+1}\right) \, dx](https://img.qammunity.org/2023/formulas/mathematics/high-school/opbheszeb0s13ydpd25qjrqrl703ym99mp.png)
![\displaystyle \frac{dy}y = \int \left(1-\frac1{x+1}\right) \, dx](https://img.qammunity.org/2023/formulas/mathematics/high-school/cdb8pdh2j6ogwnmgxjnvirm9g5j9iqaoy9.png)
![\ln|y| = x - \ln|x+1| + C](https://img.qammunity.org/2023/formulas/mathematics/high-school/78hkjwd77xw3njp6r9p183dd6uopf9gbp3.png)
When x = 0, we have y = 2, so we solve for the constant C :
![\ln|2| = 0 - \ln|0 + 1| + C \implies C = \ln(2)](https://img.qammunity.org/2023/formulas/mathematics/high-school/zpcxzjat1za7hohuqb1vas7eq4f64yx3ua.png)
Then the particular solution to the DE is
![\ln|y| = x - \ln|x+1| + \ln(2)](https://img.qammunity.org/2023/formulas/mathematics/high-school/vunal26uxic8uorftgwyx01aae7kbcbo06.png)
We can go on to solve explicitly for y in terms of x :
![e^(\ln|y|) = e^(x - \ln|x+1| + \ln(2)) \implies \boxed{y = (2e^x)/(x+1)}](https://img.qammunity.org/2023/formulas/mathematics/high-school/23mxgfqwbx0lptlgh2lb1wp83nq2f3q2j2.png)
(b) The curves y = x² and y = 2x - x² intersect for
![x^2 = 2x - x^2 \implies 2x^2 - 2x = 2x (x - 1) = 0 \implies x = 0 \text{ or } x = 1](https://img.qammunity.org/2023/formulas/mathematics/high-school/qcerevh7ii0tf4tr0tlyzx4sf02eqdu29i.png)
and the bounded region is the set
![\left\{(x,y) ~:~ 0 \le x \le 1 \text{ and } x^2 \le y \le 2x - x^2\right\}](https://img.qammunity.org/2023/formulas/mathematics/high-school/o9a6y0t8vnhf7iwhvq27lm13rlrq0d07am.png)
The area of this region is
![\displaystyle \int_0^1 ((2x-x^2)-x^2) \, dx = 2 \int_0^1 (x-x^2) \, dx = 2 \left(\frac{x^2}2 - \frac{x^3}3\right)\bigg|_0^1 = 2\left(\frac12 - \frac13\right) = \boxed{\frac13}](https://img.qammunity.org/2023/formulas/mathematics/high-school/fquoqhs983d4dk5vhrxvjew9jfl1wifyhq.png)