3.2k views
0 votes
The mean annual tuition and fees for a sample of 15 private colleges was with a standard deviation of . A dotplot shows that it is reasonable to assume that the population is approximately normal. You wish to test whether the mean tuition and fees for private colleges is different from 32,500 a) state the null and alternate hypotheses b) calculate the standard error c) calculate the test statistic d) find the p - value .

1 Answer

2 votes

Answer:

Explanation:

The question is incomplete. The complete question is:

The mean annual tuition and fees for a sample of 15 private colleges was $35,500 with a standard deviation of $6500. A dotplot shows that it is reasonable to assume that the population is approximately normal. You wish to test whether the mean tuition and fees for private colleges is different from $32,500. State the null and alternate hypotheses. A) H0: 4 = 32,500, H:4=35,500 C) H: 4 = 35,500, H7:35,500 B) H: 4 = 32,500, H : 4 # 32,500 D) H0:41 # 32,500, H : 4 = 32,500

Solution

We would set up the hypothesis test. This is a test of a single population mean since we are dealing with mean

For the null hypothesis,

H0: µ = 32500

For the alternative hypothesis,

Ha: µ ≠ 32500

This is a two tailed test.

Since the number of samples is small and the population standard deviation is not given, the distribution is a student's t.

Since n = 15,

Degrees of freedom, df = n - 1 = 15 - 1 = 14

t = (x - µ)/(s/√n)

Where

x = sample mean = 35500

µ = population mean = 32500

s = samples standard deviation = 6500

t = (35500 - 32500)/(6500/√15) = 1.79

We would determine the p value using the t test calculator. It becomes

p = 0.095

Assuming alpha = 0.05

Since alpha, 0.05 < than the p value, 0.095, then we would fail to reject the null hypothesis.

User Alok Pathak
by
5.1k points