Answer:
relative maximum: x = 1
relative minimum: x = 7
Explanation:
Critical points:
Values of x for which f'(x) = 0.
Second derivative test:
For a critical point, if f''(x) > 0, the critical point is a relative minimum.
Otherwise, if f''(x) < 0, the critical point is a relative maximum.
Solving a quadratic equation:
Given a second order polynomial expressed by the following equation:
.
This polynomial has roots
such that
, given by the following formulas:
![x_(1) = (-b + √(\bigtriangleup))/(2*a)](https://img.qammunity.org/2021/formulas/mathematics/college/oyav4t50gxwlebnxow0jkg1h1wg0cug5v8.png)
![x_(2) = (-b - √(\bigtriangleup))/(2*a)](https://img.qammunity.org/2021/formulas/mathematics/college/ab43b5ab1q0isg535d913r7c1xw0asolw7.png)
![\bigtriangleup = b^(2) - 4ac](https://img.qammunity.org/2021/formulas/mathematics/college/zirtrp8pc9sd5ixxvxuq5wacoopj7h2hyk.png)
In this question:
![f(x) = x^(3) - 12x^(2) + 21x - 8](https://img.qammunity.org/2021/formulas/mathematics/college/y6qhlecqkjg1o9vku0xswkaz9b6ag6hp1n.png)
Finding the critical points:
![f'(x) = 3x^(2) - 24x + 21](https://img.qammunity.org/2021/formulas/mathematics/college/yh1moxyucv181btxjmgjwnn6bsmh83q6ok.png)
![3x^(2) - 24x + 21 = 0](https://img.qammunity.org/2021/formulas/mathematics/college/fddxpjhi1k4vzc31hyz5lufo7s4m8xbt56.png)
Simplifying by 3
![x^(2) - 8x + 7 = 0](https://img.qammunity.org/2021/formulas/mathematics/college/19m483wx9ab3zynfkqmtilkhcuy9xin8ij.png)
So
![a = 1, b = -8, c = 7](https://img.qammunity.org/2021/formulas/mathematics/college/lftar695fiamw0vwfvm418xt67xbwbvemt.png)
![\bigtriangleup = (-8)^(2) - 4*1*7 = 36](https://img.qammunity.org/2021/formulas/mathematics/college/kvh4pfjzejkc0xu0qdmpg5ir9331chrwn6.png)
![x_(1) = (-(-8) + √(36))/(2) = 7](https://img.qammunity.org/2021/formulas/mathematics/college/uvtrdp7fa7c9nlqgavbtcv8wqdef6r99ep.png)
![x_(2) = (-(-8) - √(36))/(2) = 1](https://img.qammunity.org/2021/formulas/mathematics/college/j0bqxc21x0tuj4qpijjcn9r6oxzse4jxji.png)
Second derivative test:
The critical points are x = 1 and x = 7.
The second derivative is:
![f''(x) = 6x - 24](https://img.qammunity.org/2021/formulas/mathematics/college/92hj3n2fbfzujgsdjsspcs3mlw8ch16mqj.png)
![f''(1) = 6*1 - 24 = -18](https://img.qammunity.org/2021/formulas/mathematics/college/2k1kv505tz3dmzdtd030m9a0ofbnf0rzc9.png)
Since f''(1) < 0, at x = 1 there is a relative maximum.
![f''(7) = 6*7 - 24 = 18](https://img.qammunity.org/2021/formulas/mathematics/college/tuuvs4tljx7houj5pblhljskvl5l21hns9.png)
Since f''(x) > 0, at x = 7 there is a relative minumum.