81.7k views
1 vote
Find the exact value of each of the following under the given conditions.

a. cosine left parenthesis alpha plus beta right parenthesis        b. sine left parenthesis alpha plus beta right parenthesis        c. tangent left parenthesis alpha plus beta right parenthesis
tangent alpha equals one half
​, pi less than alpha less than StartFraction 3 pi Over 2 EndFraction
​, and cosine beta equals three fifths
​, StartFraction 3 pi Over 2 EndFraction less than beta less than 2 pi

User Jarnal
by
6.1k points

1 Answer

2 votes

Answer:


(a)-(11√(5))/(25) \\(b) -(2√(5))/(25) \\(c)(11)/(2)

Explanation:


\tan \alpha =\frac12, \pi < \alpha< (3 \pi)/(2)

Therefore:


\alpha$ is in Quadrant III

Opposite = -1

Adjacent =-2

Using Pythagoras Theorem


Hypotenuse^2=Opposite^2+Adjacent^2\\=(-1)^2+(-2)^2=5\\Hypotenuse=√(5)

Therefore:


\sin \alpha =-(1)/(√(5))\\\cos \alpha =-(2)/(√(5))

Similarly


\cos \beta =\frac35, (3 \pi)/(2)<\beta<2\pi\\\beta $ is in Quadrant IV (x is negative, y is positive), therefore:\\Adjacent=$-3\\$Hypotenuse=5\\Opposite=4 (Using Pythagoras Theorem)


\sin \beta =(4)/(5)\\\tan \beta =-(4)/(3)

(a)


\cos(\alpha + \beta)=\cos\alpha\cos\beta-\sin \alpha\sin \beta\\


=-(2)/(√(5))\cdot (3)/(5)-(-(1)/(√(5)))((4)/(5))\\=-(2√(5))/(5)\cdot (3)/(5)+(√(5))/(5)\cdot(4)/(5)\\=-(2√(5))/(25)

(b)


\sin(\alpha + \beta)=\sin\alpha\cos\beta+\cos \alpha\sin \beta


\sin(\alpha + \beta)=\sin\alpha\cos\beta+\cos \alpha\sin \beta\\=-(1)/(√(5))\cdot\frac35+(-(2)/(√(5)))((4)/(5))\\=-(√(5))/(5)\cdot\frac35-(2√(5))/(5)\cdot(4)/(5)\\=-(11√(5))/(25)

(c)


\tan(\alpha + \beta)=(\sin(\alpha + \beta))/(\sin(\alpha + \beta))=-(11√(5))/(25) / -(2√(5))/(25) =(11)/(2)

User Imanali Mamadiev
by
5.7k points