Answer:
2400 pages
Explanation:
First, let's make equations for the daily cost of the first printing press, with y being the total daily cost, and x being the total number of pages printed.
y=0.05x+50
Now, let's make an equation for the total daily cost of the second printing press.
y=(2/30)x+10
Since both equations are equal to y, let's use the substitution method and set them equal to each other.
0.05x+50=(2/30)x+10
Let's substitute 80 for x into both equations and see if we get a true statement.
0.05(80)+50=(2/30)(80)+10
4+50=16/3+10
54=46/3 X
Since this is a false statement, 80 pages cannot be the solution.
Now, let's try 1500 for x.
0.05(1500)+50=(2/30)(1500)+10
75+50=100+10
125=110 X
Since this is a false statement, 1500 pages cannot be the solution.
Now, let's try 2400 for x.
0.05(2400)+50=(2/30)(2400)+10
120+50=160+10
170=170
Since this is a true statement, 2400 pages is the correct solution, and it will lead to a daily cost of $170.