210k views
5 votes
I could use some more help

I could use some more help-example-1
User Marvzz
by
8.1k points

1 Answer

4 votes

Answer:


\left[\begin{array}{ccc}-30&22&8\\-4&-4&16\\30&-28&18\end{array}\right]

Explanation:

Given


A = \left[\begin{array}{ccc}-1&9&2\\10&-10&2\\-5&6&-5\end{array}\right]


B = \left[\begin{array}{ccc}7&-1&-1\\6&-4&-3\\-10&10&-7\end{array}\right]

Required

2A - 4B

To solve 2A - 4B, we first multiply matrix A by 2 and matrix B by 4

So, if


A = \left[\begin{array}{ccc}-1&9&2\\10&-10&2\\-5&6&-5\end{array}\right]


2A = 2 *\left[\begin{array}{ccc}-1&9&2\\10&-10&2\\-5&6&-5\end{array}\right]


2A = \left[\begin{array}{ccc}-2&18&4\\20&-20&4\\-10&12&-10\end{array}\right]

If


B = \left[\begin{array}{ccc}7&-1&-1\\6&-4&-3\\-10&10&-7\end{array}\right]

then


4B = 4*\left[\begin{array}{ccc}7&-1&-1\\6&-4&-3\\-10&10&-7\end{array}\right]


4B = \left[\begin{array}{ccc}28&-4&-4\\24&-16&-12\\-40&40&-28\end{array}\right]

So; 2A - 4B becomes


\left[\begin{array}{ccc}-2&18&4\\20&-20&4\\-10&12&-10\end{array}\right] - \left[\begin{array}{ccc}28&-4&-4\\24&-16&-12\\-40&40&-28\end{array}\right]


\left[\begin{array}{ccc}-2-28&18-(-4)&4-(-4)\\20-24&-20-(-16)&4-(-12)\\-10-(-40)&12-40&-10-(-28)\end{array}\right]


\left[\begin{array}{ccc}-30&18+4&4+4\\20-24&-20+16&4+12\\-10+40&12-40&-10+28\end{array}\right]


\left[\begin{array}{ccc}-30&22&8\\-4&-4&16\\30&-28&18\end{array}\right]

Hence, 2A - 4B is equivalent to


\left[\begin{array}{ccc}-30&22&8\\-4&-4&16\\30&-28&18\end{array}\right]

User Dragos Bobolea
by
8.7k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories