Answer:
![z =(18.45-19)/((7)/(√(106)))= -0.809](https://img.qammunity.org/2021/formulas/mathematics/college/x1njdav54it8txi2c8p9gy44ls0luj9iqq.png)
And if we use the normal standard distribution or excel we got:
![P(z<-0.809) = 0.209](https://img.qammunity.org/2021/formulas/mathematics/college/g8ryqfvxxluwbsur1d0poxmggpf058vmje.png)
Explanation:
For this case we have the following info given:
represent the mean
represent the standard deviation
represent the sample size
The distribution for the sample size if we use the central limit theorem (n>30) is given by:
![\bar X \sim N(\mu , (\sigma)/(√(n)))](https://img.qammunity.org/2021/formulas/mathematics/college/sailtwjamlyrxe5pna7bmzm9a2rvkr5244.png)
And for this case we want to find the following probability:
![P(\bar X< 18.45)](https://img.qammunity.org/2021/formulas/mathematics/college/db1tnx6z8b19elxleo82xnynunhs50f6y9.png)
And for this case we can use the z score formula given by:
![z =(\bar X -\mu)/((\sigma)/(√(n)))](https://img.qammunity.org/2021/formulas/mathematics/college/ec25opz0iskboyd0wl5m2t1226afp7xia9.png)
And replacing we got:
![z =(18.45-19)/((7)/(√(106)))= -0.809](https://img.qammunity.org/2021/formulas/mathematics/college/x1njdav54it8txi2c8p9gy44ls0luj9iqq.png)
And if we use the normal standard distribution or excel we got:
![P(z<-0.809) = 0.209](https://img.qammunity.org/2021/formulas/mathematics/college/g8ryqfvxxluwbsur1d0poxmggpf058vmje.png)