Answer:
Z = -1.65
![\bar x \approx 0.44 \ inches](https://img.qammunity.org/2021/formulas/mathematics/college/lvhypdc4defr93n1qaiyxcu6vrarfihqqd.png)
Explanation:
The main objective is to compute the data for the Z value and determine the
of the sample distribution
Given that;
the tires' thickness is normally distributed with a mean μ = 0.45 in
standard deviation σ = 0.05 in
sample size = 65 tires
Also; we are being told that the thickness separates the lowest 5% of the means from the highest 95%
∴
P(Z < Z) =0.05
From the Z- table
P(Z < -1.645) = 0.05
Z = -1.65
Similarly;
Let consider
to be the sample mean;
Then:
mean
![(\mu_(\bar x)) = \mu = 0.45](https://img.qammunity.org/2021/formulas/mathematics/college/f2ccvhz80rwp12bvnamehq57tnttp48hq0.png)
standard deviation
![(\sigma_(\bar x) ) = (\sigma)/(√(n))](https://img.qammunity.org/2021/formulas/mathematics/college/q0z8vdflsrmz8qynp447obs6u06gpfwok7.png)
![=(0.05)/(√(65))](https://img.qammunity.org/2021/formulas/mathematics/college/cy678ikn5w9vvdeqi2znwvyddkcnft5f4d.png)
= 0.00620174
By applying the Z-score formula:
x = μ + ( Z × σ )
![\bar x = \mu _(\bar x) +(Z * \sigma _(\bar x))](https://img.qammunity.org/2021/formulas/mathematics/college/udkedt3mn0q6j8mhftqmivchkt2z7x0o8y.png)
![\bar x = 0.45 + (-1.65 *0.00620174)](https://img.qammunity.org/2021/formulas/mathematics/college/6gbrgvfq4ee168kthfwlh4efk858uioccz.png)
![\bar x= 0.439767129](https://img.qammunity.org/2021/formulas/mathematics/college/i4madzj7v7racx3iidndtsy6qcnw29zl7i.png)
![\bar x \approx 0.44 \ inches](https://img.qammunity.org/2021/formulas/mathematics/college/lvhypdc4defr93n1qaiyxcu6vrarfihqqd.png)