Answer: t = 9.05 min
Explanation: The rate of temperature over time is given by:
![(dT)/(dt) = k (T - T_c)](https://img.qammunity.org/2021/formulas/mathematics/college/fkauiwdheakq0sqkdvs8x401tirjur6tmn.png)
where:
K is the constant of transference of heat
is temperature of the container
![\int\limits^a_b {(1)/(T-T_c) } \, dT = \int\limits^a_b {k} \, dt](https://img.qammunity.org/2021/formulas/mathematics/college/s9faj5igawm129cgebc3j5it0tanko7ixf.png)
ln (T -
) = kt + c
![e^(kt+c) = T - T_c](https://img.qammunity.org/2021/formulas/mathematics/college/yc5c04sjyjsvfd1kqiq1jzkpazmx1b4w6t.png)
![Ce^(kt) = T - T_c](https://img.qammunity.org/2021/formulas/mathematics/college/fsei0jtjgtzamgyyrwbxbvz8e7zw95e21c.png)
![T = Ce^(kt) + T_c](https://img.qammunity.org/2021/formulas/mathematics/college/9elzak2w3ic935l2plvm1msfuwiuy4mwlk.png)
In container A, the temperature is at 0°C, so
![T = Ce^(kt) + 0](https://img.qammunity.org/2021/formulas/mathematics/college/bd9hhtextvb589a8uqvzo33be8mmzsh6md.png)
For the bar, when t = 0 min, T = 100°C:
![T = Ce^(kt)](https://img.qammunity.org/2021/formulas/mathematics/college/gc77l8s2hniv4bga71dhuzgynvor0oaxs7.png)
100 =
![Ce^(k.0)](https://img.qammunity.org/2021/formulas/mathematics/college/tmxu66u10o0vkijlky4kflso75hyr446ln.png)
C = 100
After 1 minute, the temperature of the bar is 90°C, so:
![T = 100e^(kt)](https://img.qammunity.org/2021/formulas/mathematics/college/j7z0715wa3pvkobskl7affui24580hzrad.png)
![100e^(k.1) = 90](https://img.qammunity.org/2021/formulas/mathematics/college/f6s6o7xf1zu058rdoxa4x41l5p6ixfrftc.png)
![e^(k) = (90)/(100)](https://img.qammunity.org/2021/formulas/mathematics/college/jedn6wbq3gtdw245s9lht94dnlq1d5m1se.png)
![ln (e^k) = ln (0.9)](https://img.qammunity.org/2021/formulas/mathematics/college/jv9o16vgof2lp5qzvr4732p84x06f3b0ex.png)
k = ln(0.9)
k = - 0.105
![T = 100e^(-0.105t)](https://img.qammunity.org/2021/formulas/mathematics/college/p07jyhbfxvy1i3ndrtov0w3gcy13lr50dl.png)
After 2 minutes, the temperature will be:
![T = 100e^(-0.105.2)](https://img.qammunity.org/2021/formulas/mathematics/college/kbzvsf7gee1qsbzz87907ucu0df9nubsj7.png)
T = 81.06°C
For container B, the temperature is 100°C, so:
![T = Ce^(kt) + T_c](https://img.qammunity.org/2021/formulas/mathematics/college/9elzak2w3ic935l2plvm1msfuwiuy4mwlk.png)
![T = Ce^(kt) + 100](https://img.qammunity.org/2021/formulas/mathematics/college/abnbr68yua8mfgcyk2j0wi2arnjcrsysc3.png)
The initial temperature of the bar when entering the container B is T = 81.06°C, then:
![81.06 = Ce^(k.0) + 100](https://img.qammunity.org/2021/formulas/mathematics/college/t1ke0yuiwbw3gws6yisi7et3aqyw2j0g8v.png)
C = - 18.94
After 1 minute, the temperature rises 10°C:
![T = - 18.94e^(kt) + 100](https://img.qammunity.org/2021/formulas/mathematics/college/72qicgixugztxpoca1lknz83krrh1c6pza.png)
91 =
![- 18.94e^(k.1) + 100](https://img.qammunity.org/2021/formulas/mathematics/college/1sobmvrwwoer77zut2rmo954wgzgt3017j.png)
![e^(k) = (9)/(18.94)](https://img.qammunity.org/2021/formulas/mathematics/college/xsxxsz0l40rbkktkhmecuraayh5enwn48z.png)
![e^(k) = 0.475](https://img.qammunity.org/2021/formulas/mathematics/college/j6pe6q66huxc2j349yluqy35q1t0gdfjpz.png)
k = ln(0.475)
k = - 0.744
![T = - 18.94e^(-0.744t) + 100](https://img.qammunity.org/2021/formulas/mathematics/college/w6mc9b5p47kwnmfutn2hvy4yk45vfg35hb.png)
When T = 99.9°C:
![99.9 = - 18.94e^(-0.744t) + 100](https://img.qammunity.org/2021/formulas/mathematics/college/qqamam9mw8a7e6no3zbkf6w6ooy8en30ob.png)
![e^(- 0.744t) = (99.9 - 100)/(- 18.94)](https://img.qammunity.org/2021/formulas/mathematics/college/pua8k34kuawevmpophodxwoeksty3jilap.png)
![e^(-0.744t) = 0.0053](https://img.qammunity.org/2021/formulas/mathematics/college/9uliqm7uwcwcstr6m6vf8atlprexe47y3t.png)
t =
![(ln(0.0053))/(-0.744)](https://img.qammunity.org/2021/formulas/mathematics/college/vquoz9m6q10qm1qy6lu54fp4ocggx7c546.png)
t = 7.05 min
The entire process will take:
t = 2 + 7.05
t = 9.05 min