Answer:
W = 3.21x10⁻¹¹ J
Step-by-step explanation:
The work required to separate the plates can be calculated using the following equation:
![W = U_(2) - U_(1) = (1)/(2)(C_(2)V_(2)^(2) - C_(1)V_(1)^(2))](https://img.qammunity.org/2021/formulas/physics/college/4w3rz09k17em1xtjqtudhm057hp4rdm1oz.png)
Where:
U₂: is the final stored energy
U₁: is the initial stored energy
C₂: is the final capacitance
C₁: is the initial capacitance
V₁: is the initial potential difference = 5.00 V
V₂: is the final potential difference
The initial and final capacitance is:
![C_(1) = \epsilon_(0)*(A)/(d_(1))](https://img.qammunity.org/2021/formulas/physics/college/e7v0zl1c0jisryhn0yvh9zfadh0adhwr2s.png)
Where:
ε₀: is the vacuum permittivity = 8.85x10⁻¹² C²/(N*m²)
d: is the initial distance = 3.00 mm = 3.00x10⁻³ m
A: is the plate area = 865 mm² = 8.65x10⁻⁴ m²
Similarly, C₂ is:
![C_(2) = \epsilon_(0)*(A)/(d_(2)) = 8.85 \cdot 10^(-12) C^(2)/(N*m^(2))*(8.65 \cdot 10^(-4) m^(2))/(3.00 + 3.00 \cdot 10^(-3) m) = 1.28 \cdot 10^(-12) F](https://img.qammunity.org/2021/formulas/physics/college/smm6nnhvgrzttz97oieqjbmtl9d5yshyag.png)
Now, V₂ can be calculated by finding the initial charge (q₁):
![q_(1) = C_(1)V_(1) = 2.55 \cdot 10^(-12) F*5.00 V = 1.28 \cdot 10^(-11) C](https://img.qammunity.org/2021/formulas/physics/college/7dt2oeenvjs5gzs26dno2uwic1g5kwwlx1.png)
Since, q₁ is equal to q₂, V₂ is:
![V_(2) = (q_(2))/(C_(2)) = (1.28 \cdot 10^(-11) C)/(1.28 \cdot 10^(-12) F) = 10 V](https://img.qammunity.org/2021/formulas/physics/college/7wb5sip0mq9b36g3o4uekff7qlh0nao5rg.png)
Finally, we can find the work:
![W = (1)/(2)(C_(2)V_(2)^(2) - C_(1)V_(1)^(2)) = (1)/(2)(1.28 \cdot 10^(-12) F*(10 V)^(2) - 2.55 \cdot 10^(-12) F(5.00 V)^(2)) = 3.21 \cdot 10^(-11) J](https://img.qammunity.org/2021/formulas/physics/college/lcq5a864rj5483jqnr2h5sb5j888zkxa2w.png)
Therefore, the work required to separate the plates is 3.21x10⁻¹¹ J.
I hope it helps you!