Answer:
the acceleration of the wedge
![\mathbf{a_A = 5.0702 \ ft/s^2}](https://img.qammunity.org/2021/formulas/engineering/college/wln816n6srtaw9azajogn5j8qpfik377aw.png)
the acceleration of the block relative to the wedge is
![\mathbf{a_(B/A) \approx 20.50 \ ft/s^2}](https://img.qammunity.org/2021/formulas/engineering/college/mkiw11flnd229fuev2r60t7t43lnbr324o.png)
Step-by-step explanation:
Let assume that the angle at which the block starts to slide is 30°
Given that ;
the weight of block B =
= 12-lb
the weight of wedge A =
= 30-lb
The 12-lb block B starts from rest and slides on the 30-lb wedge A, which is supported by a horizontal surface.
We can resolve the equation of motion for the wedge and the block into the vertical component and horizontal components as follows:
![\sum f_x = m_Aa_A \\ \\ N_1 sin 30^0 = m_Aa_A \\ \\ 0.5 N_1 = ( (W_A)/(g))a_A --- (1)](https://img.qammunity.org/2021/formulas/engineering/college/3uts7ehjq6cdt8yibjrvixbz7i7z517gp4.png)
![\sum F_x = m_Ba_x \\ \\ \sum F_x = m_B(a_x cos \ 30^0 - a_(B/A)) \\ \\ -W_b sin 30^0 = ( (W_B)/(g))(a_A cos \ 30^0 - a_(B/A)) \\ \\ a_(B/A) = a_A \ cos \ 30^0 + g \ sin 30^0 ----- (2)](https://img.qammunity.org/2021/formulas/engineering/college/ev0i5c8yaxytd7na3qnafxpjxizhqshugl.png)
![\sum Fy = m_B ay \\ \\ \sum Fy = m_B (-a_A \ si 30^0) \\ \\ N_1 - W_B cos 30^0 = - ((W_B)/(g)) a_A \ sin30^0 ----- (3)](https://img.qammunity.org/2021/formulas/engineering/college/ucq8udalh8fb3ipihlllepecyskqyb92x0.png)
From equation (1)
![0.5 N_1 = ( (W_A)/(g))a_A \\ \\ (1)/(2) N_1 = ( (W_A)/(g))a_A \\ \\ N_1 = 2 ( (W_A)/(g))a_A](https://img.qammunity.org/2021/formulas/engineering/college/g5843qdv8d4pp4uwp6mqtdpz7o6uzeome1.png)
From equation (3) ; we have:
![N_1 - W_B cos 30^0 = - ((W_B)/(g)) a_A \ sin30^0](https://img.qammunity.org/2021/formulas/engineering/college/zht7du42xm3gzadoy5u1pia0u1zyvp9i2k.png)
replacing
in above equation (3); we have :
![2 ( (W_A)/(g))a_A - W_B cos \ 30^0 = - ((W_B)/(g)) a_A \ sin \ 30^0](https://img.qammunity.org/2021/formulas/engineering/college/nx11ui1tf9tqlb0r5qfqvoxz4tjczql3zb.png)
Making
the subject of the formula; we have :
![a_A = (gW_B \ cos \ 30^0)/(2W_A + W_B \ sin \ 30^0 )](https://img.qammunity.org/2021/formulas/engineering/college/y41xjx9l05mk5ef4r1lswwvrj67z2uwoqm.png)
where ; g =
![32.2 \ ft/s^2](https://img.qammunity.org/2021/formulas/engineering/college/1ios28nvjyhnuigakuy1kteiuh8z8kshtd.png)
the weight of block B =
= 12-lb
the weight of wedge A =
= 30-lb
Solving for the acceleration of wedge A
; we have;
![a_A = ((32.2 \ ft/s^2 )(12 \ lb) \ cos \ 30^0)/(2( 30 \ lb )+ 12 \ lb \ sin \ 30^0 )](https://img.qammunity.org/2021/formulas/engineering/college/aj1lkdkftcalax9anzfwn3blywfsumup95.png)
![a_A = ((334.63 \ ft/s^2 ))/(66 \ )](https://img.qammunity.org/2021/formulas/engineering/college/cg4ovr26vns4y4v5brktcj2d8xe6fvn9gt.png)
![\mathbf{a_A = 5.0702 \ ft./s^2}](https://img.qammunity.org/2021/formulas/engineering/college/1p4kl76d66gqqer0tx7tye34tk0tf7klc3.png)
Thus; the acceleration of the wedge
![\mathbf{a_A = 5.0702 \ ft/s^2}](https://img.qammunity.org/2021/formulas/engineering/college/wln816n6srtaw9azajogn5j8qpfik377aw.png)
To determine the acceleration of the block relative to the wedge
; Let consider equation 2
From equation 2;
![a_(B/A) = a_A \ cos \ 30^0 + g \ sin 30^0](https://img.qammunity.org/2021/formulas/engineering/college/lhp0jmmrnsa9p6uz2xx5j4ui0at3fkng5k.png)
we know that:
![\mathbf{a_A = 5.0702 \ ft/s^2}](https://img.qammunity.org/2021/formulas/engineering/college/wln816n6srtaw9azajogn5j8qpfik377aw.png)
g = 32.2 ft/s²
Thus;
![a_(B/A) = 5.0702 * \ cos \ 30^0 + 32.2 ft/s^2 * \ sin 30^0](https://img.qammunity.org/2021/formulas/engineering/college/tn2q1hn3br1xt63ighp5kawzqu16ri5yxv.png)
![a_(B/A) = 5.0702 ft/s^2 * \ 0.8660 + 32.2 ft/s^2 * 0.5](https://img.qammunity.org/2021/formulas/engineering/college/od8epawp2o05pt4ljau34gbmsjxbyfe054.png)
![a_(B/A) =4.3907932 \ ft/s^2 + 16.1 \ ft/s^2](https://img.qammunity.org/2021/formulas/engineering/college/grix9tqj69dycji4idqq7o2wm7p3tavdej.png)
![a_(B/A) = 20.4907932 \ ft/s^2](https://img.qammunity.org/2021/formulas/engineering/college/pc383swnefw2fyk5fx8c2k7t2hd1are24t.png)
![\mathbf{a_(B/A) \approx 20.50 \ ft/s^2}](https://img.qammunity.org/2021/formulas/engineering/college/mkiw11flnd229fuev2r60t7t43lnbr324o.png)
Thus; the acceleration of the block relative to the wedge is
![\mathbf{a_(B/A) \approx 20.50 \ ft/s^2}](https://img.qammunity.org/2021/formulas/engineering/college/mkiw11flnd229fuev2r60t7t43lnbr324o.png)