Answer:
250
Explanation:
Remember there are 2 conditions to perform a goodness of fit chi-test:
Simple random sample: The data must come from a random sample or a randomized experiment.
Expected counts: All expected counts are at least five. You must state the expected counts.
To explain expected counts a bit better, imagine I surveyed 100 people about their ice cream preferences. Before beginning it is believed that 50% like chocolate, 47% like vanilla, and 3% like strawberry.
That means our expected counts are:
100(.50) = 50
100(.47) = 47
100(.03) = 3
This is a problem, because 3 < 5 and so we can not perform a goodness of fit chi-test.
So how do you find the minimum sample size? Use this formula:
sample size (n) * smallest proportion (p) = 5
In the context of ice cream:
n*.03 = 5
n = 5 / .03
n = 167 (because you can't interview 2/3s of a person)
In the context of the problem:
n* .02 = 5
n = 5 / 0.02
n = 250
This means we need to sample at least 250 people to meet our expected count condition.