Answer:
![6cm^2](https://img.qammunity.org/2021/formulas/mathematics/college/yhwqtymysul9ypkp5048qlk8ufld6p9jsw.png)
Explanation:
Let x and y be the sides of the rectangle.
Area of the Triangle, A(x,y)=xy
From the diagram, Triangle ABC is similar to Triangle AKL
AK=4-y
Therefore:
![(x)/(6) =(4-y)/(4)](https://img.qammunity.org/2021/formulas/mathematics/college/wxftffppntdvt9e7do3a5zo0org2pzwulh.png)
![4x=6(4-y)\\x=(6(4-y))/(4) \\x=1.5(4-y)\\x=6-1.5y](https://img.qammunity.org/2021/formulas/mathematics/college/al7itsy1llx5avpevhvsfcesop4x5lr8yz.png)
We substitute x into A(x,y)
![A=y(6-1.5y)=6y-1.5y^2](https://img.qammunity.org/2021/formulas/mathematics/college/v0je0csbc9szp1onhsc43lll882o91fpbg.png)
We are required to find the maximum area. This is done by finding
the derivative of Aand solving for the critical points.
Derivative of A:
![A'(y)=6-3y\\$Set $A'=0\\6-3y=0\\3y=6\\y=2$ cm](https://img.qammunity.org/2021/formulas/mathematics/college/jgrxwvovfcv8e9e2vkesx23zsrtx1d3tkp.png)
Recall that: x=6-1.5y
x=6-1.5(2)
x=6-3
x=3cm
Therefore, the maximum rectangle area is:
Area =3 X 2 =
![6cm^2](https://img.qammunity.org/2021/formulas/mathematics/college/yhwqtymysul9ypkp5048qlk8ufld6p9jsw.png)