The car's velocity at time t is given by
![v=27.7(\rm m)/(\rm s)+\left(-2.00(\rm m)/(\mathrm s^2)\right)t](https://img.qammunity.org/2021/formulas/physics/college/aaboxfsen1gty3ebaqqwb20hvwkrwy0xgg.png)
It comes to a stop when v = 0, which happens when
![0=27.7(\rm m)/(\rm s)+\left(-2.00(\rm m)/(\mathrm s^2)\right)t\implies t=13.85\,\mathrm s](https://img.qammunity.org/2021/formulas/physics/college/zx06x14thr65pwsygk79bwjlvv20w3wcen.png)
or after about 13.9 s.
In this time, the car travels a distance x given by
![x=\left(27.7(\rm m)/(\mathrm s)\right)(13.85\,\mathrm s)+\frac12\left(-2.00(\rm m)/(\mathrm s^2)\right)(13.85\,\mathrm s)^2=191.823\,\mathrm m](https://img.qammunity.org/2021/formulas/physics/college/sbtosxhpmdiylpb2uhxljreb90ynin6hqb.png)
or about 192 m.
In one complete revolution, each tire covers a distance equal to its circumference,
![2\pi(0.340\,\mathrm m)\approx2.13628\,\mathrm m](https://img.qammunity.org/2021/formulas/physics/college/ib5p69aukrzqbp08w4fkw9woqcit45bz5j.png)
or about 2.14 m.
This means each tire will complete approximately 192/2.14 ≈ 90 revolutions.