229k views
0 votes
Apply Greens Theorem to evaluate the integral. D19y + x)dx + (y + 3x)dy C: The circle (x - 7)2 + (y-7)2 = 6 $19y + xApply​ Green's Theorem to evaluate the integral. ModifyingBelow Contour integral With Upper C left parenthesis 9 y plus x right parenthesis dx plus left parenthesis y plus 3 x right parenthesis dy ∮ C (9y+x)dx+(y+3x)dy     ​C: The circle left parenthesis x minus 7 right parenthesis squared plus left parenthesis y minus 7 right parenthesis squared equals 6 (x−7)2+(y−7)2=6

1 Answer

5 votes

By Green's theorem,


\displaystyle\int_C(9y+x)\,\mathrm dx+(y+3x)\,\mathrm dy=\iint_D(\partial(y+3x))/(\partial x)-(\partial(9y+x))/(\partial y)\,\mathrm dy\,\mathrm dx=-6\iint_D\mathrm dy\,\mathrm dx

where
D is the disk with
C as its boundary. The integral is simply -6 times the area of the disk
D, which has radius √6, and hence area 6π, so the value of the integral is -36π.

User Max Williams
by
4.8k points