197k views
2 votes
If f(x)=2x+1 and g(x)=x2-7find(f+g)(x)

User Nerdinand
by
4.7k points

2 Answers

4 votes

Answer:


\boxed{\sf (f+g)(x) = {x}^(2) + 2x - 6}

Given:


\sf f(x) =2x + 1 \\ \sf g(x) = {x}^(2) - 7

To find:


\sf (f + g)(x) = f(x) + g(x)

Explanation:


\sf \implies(f + g)x = f(x) + g(x) \\ \\ \sf \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: = (2x + 1) + ( {x}^(2) - 7) \\ \\ \sf \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: = 2x + 1 + {x}^(2) - 7 \\ \\ \sf \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: = {x}^(2) + 2x - 7 + 1 \\ \\ \sf \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: = {x}^(2) + 2x - 6

User Enyinnaya
by
4.5k points
3 votes

Answer:

x^2+2x -6

Explanation:

f(x)=2x+1

g(x)=x^2-7

(f+g)(x)= 2x+1+x^2-7

Combine like terms

= x^2+2x -6

User Sujan Thakare
by
4.6k points