185k views
25 votes
Find the surface area and volume of a 1-inch cube and a 10-inch cube. What is the ratio of the surface areas? What is the ratio of the volumes?​

1 Answer

2 votes


\maltese \: \: \underline{\underline{\frak{Understanding~the~question :-}}} \\ \\

For solving this question, we will take the help of the branch of mathematics that studies the sizes of different shapes may they be 2D or 3D, called mensuration.

There are two parts in the question, in the first part we have been asked to calculate the ratio of the total surface area of the two cubes, for that we will calculate their total surface areas and divide them in order to calculate the ratio. In the second part, we have been asked to calculate the ratio of the volume of the two cubes, and in order to calculate the ratio, at first we will calculate the volumes of the respective cubes and then divide them. And, thus, in this way, we will get our required answer.


\maltese \: \underline{ \underline{ \frak{Given :-}}} \\ \\

Two cubes in which the sides measure,

  • Cube 1 say A = 1 inch
  • Cube 2 say B = 10 inch


\maltese \: \: \underline{ \underline{ \frak{Formula~Applied :-}}} \\ \\


\bigstar \begin{cases} \sf 1.~Volume_(cube) = {a} ^3\\ \\\sf 2.~T.S.A._(cube) = 6{a}^2\end{cases} \\ \\


\maltese \: \underline{ \underline{ \frak{Solution :-}}} \\ \\

Calculating the total surface areas,


\sf \longrightarrow TSA \: of \: A = 6( {1)}^(2) \: \: \: \\ \\ \\ \sf \longrightarrow TSA \: of \: A =6 * 1 \: \: \: \\ \\ \\ \sf \longrightarrow TSA \: of \: A = {6 \: inch}^(2) \\ \\


\sf \longrightarrow TSA \: of \: B =6 {(10)}^(2) \: \: \: \: \: \: \\ \\ \\\sf \longrightarrow TSA \: of \: B =6 * 100 \: \: \: \\ \\ \\ \sf \longrightarrow TSA \: of \: B = {600 \: inch}^(2) \\ \\

Thus, now we can calculate the ratio,


\sf \longrightarrow Ratio = \frac{TSA~of~A} {TSA~of~B} \\ \\ \\ \sf \longrightarrow Ratio = (6)/(600) \: \: \: \: \: \: \: \: \: \: \: \\ \\ \\ \sf \longrightarrow Ratio = \cancel (6)/(600) \: \: \: \: \: \: \: \: \: \: \: \\ \\ \\ \sf \longrightarrow Ratio = (1)/(100) \: \: \: \: \: \: \: \: \: \: \: \\ \\ \\ \sf \longrightarrow Ratio =1 : 100 \: \: \: \: \: \: \\ \\

Thus, the ratio of the total surface area of the cubes is 1 : 100. Now, moving to the second part of the question, and calculating the volume of the cubes, we have,


\sf \longrightarrow Volume \: of \: A= {(a)}^(3 ) \: \: \: \: \: \\ \\ \\ \sf \longrightarrow Volume \: of \: A= {(1)}^(3) \: \: \: \: \: \\ \\ \\ \sf \longrightarrow Volume \: of \: A= {1 \: inch}^(3) \\ \\


\sf \longrightarrow Volume \: of \: B = {(a)}^(3) \: \: \: \: \: \: \: \: \: \: \: \: \\ \\ \\ \sf \longrightarrow Volume \: of \: B = {(10)}^(3) \: \: \: \: \: \: \: \: \: \: \\ \\ \\ \sf \longrightarrow Volume \: of \: B = {1000 \: inch}^(3) \\ \\

Now, calculating the ratio,


\sf \longrightarrow Ratio =\frac{Volume ~of~A} {Volume~of~B} \: \: \\ \\ \\ \sf \longrightarrow Ratio = \frac{ {1 \: inch}^(3) }{1000 \: {inch}^(3) } \: \: \: \: \\ \\ \\ \sf \longrightarrow Ratio = \cancel\frac{ {1 \: inch}^(3) }{ {1000 \: inch}^(3) } \: \: \: \: \: \\ \\ \\ \sf \longrightarrow Ratio =1 : 1000 \: \: \: \: \: \: \: \: \: \: \\ \\

Thus, the ratio of the volume of the cubes is 1 : 1000.


\underline{ \rule{227pt}{2pt}} \\ \\

User Eternal
by
4.5k points