Answer:
[CH₂Cl₂] = 7.07x10⁻² M
[CH₄] = 0.319 M
[CCl₄] = 0.164 M
Step-by-step explanation:
The equilibrium reaction is the following:
2CH₂Cl₂(g) ⇄ CH₄(g) + CCl₄(g)
The equilibrium constant of the above reaction is:
![K = ([CH_(4)][CCl_(4)])/([CH_(2)Cl_(2)]^(2)) = (0.173 M*0.173 M)/((5.35 \cdot 10^(-2) M)^(2)) = 10.5](https://img.qammunity.org/2021/formulas/chemistry/college/s0wmjw6mgmba1knsrhts93zuj4m8pobt0w.png)
When 0.155 mol of CH₄(g) is added to the flask we have the following concentration of CH₄:
![C = (\eta)/(V) = (0.155 mol)/(1.00 L) = 0.155 M](https://img.qammunity.org/2021/formulas/chemistry/college/5nas3s4alp02eqenvwj1p8b220idn21iis.png)
Now, the concentrations at the equilibrium are:
2CH₂Cl₂(g) ⇄ CH₄(g) + CCl₄(g)
5.35x10⁻² - 2x 0.328 + x 0.173 + x
![K = ([CH_(4)][CCl_(4)])/([CH_(2)Cl_(2)]^(2)) = ((0.328 + x)(0.173 + x))/((5.35 \cdot 10^(-2) - 2x)^(2))](https://img.qammunity.org/2021/formulas/chemistry/college/aixncs3rs6iumg9cl2x0ewqx9t7rqduwig.png)
![10.5*(5.35 \cdot 10^(-2) - 2x)^(2) - (0.328 + x)*(0.173 + x) = 0](https://img.qammunity.org/2021/formulas/chemistry/college/ovicv1xylowoasmo5aqwynfyhten2cisxx.png)
Solving the above equation for x:
x₁ = 0.076 and x₂ = -0.0086
Hence, the concentration of the three gases once equilibrium has been reestablished is:
[CH₂Cl₂] = 5.35x10⁻² - 2(-0.0086) = 7.07x10⁻² M
[CH₄] = 0.328 + (-0.0086) = 0.319 M
[CCl₄] = 0.173 + (-0.0086) = 0.164 M
We took x₂ value because the x₁ value gives a negative CH₂Cl₂ concentration.
I hope it helps you!